

Final Noise Impact Analysis Report

S.R. 0015, Section 088 Central Susquehanna Valley Transportation Project Northern Section Northumberland and Union Counties, Pennsylvania

Prepared for:

PennDOT District 3-0 715 Jordan Avenue PO Box 218 Montoursville, Pennsylvania 17754

Prepared by:

A.D. MARBLE

2200 Renaissance Boulevard Suite 260 King of Prussia, Pennsylvania 19406

March 26, 2018

Ms. Renee Sigel Division Administrator Federal Highway Administration 228 Walnut Street, Room 508 Harrisburg, PA 17101-1720 Attention: Ms. Deborah Suciu Smith

Dear Ms. Sigel:

Attached for your review is the Final Design Noise Analysis Report for the S.R. 0015, Section 088 Central Susquehanna Valley Transportation Project Northern Section, Northumberland and Union Counties, Pennsylvania. As no noise walls are recommended, no public outreach needs to be documented.

The Bureau of Project Delivery concurs with the findings of the report in accordance with *Publication 24, Project Level Highway Traffic Noise Handbook.* Please sign below to approve the report. You may provide comments to Kathryn McKelvey at <u>kmckelvey@pa.gov</u>. She can be reached at 717-346-7674 with any questions regarding this request.

Sincerely,

/s/ Mark D. Lombard

Mark D. Lombard, Chief Environmental Policy and Development Section Bureau of Project Delivery

FHWA Division Office

Digitally signed by KEITH LYNCH DN: c=US, o=U.S. Government, ou=FHWA FHWAHarrisburgPA, ou=DOT FHWAHarrisburgPA, cn=KEITH LYNCH Date: 2018.04.04 09:54:30 -04'00'

Date

4380/kam

FINAL NOISE IMPACT ANALYSIS REPORT

S.R. 0015, Section 088 Central Susquehanna Valley Transportation Project Northern Section Northumberland and Union Counties, PA PennDOT District 3-0

Prepared for:

PennDOT District 3-0 715 Jordan Avenue PO Box 218 Montoursville, Pennsylvania 17754

Prepared by:

A.D. Marble 2200 Renaissance Boulevard Suite 260 King of Prussia, Pennsylvania 19406

> December 2017 Revised March 2018

EXECUTIVE SUMMARY

The Pennsylvania Department of Transportation (PennDOT) Engineering District 3-0 has initiated the final design for the construction of the Central Susquehanna Valley Transportation Project (CSVT). The CSVT Project is proposed as an approximate 13-mile, four-lane, limited access highway from the existing Selinsgrove Bypass (U.S. Routes 11/S.R. 0015) in Monroe Township, Snyder County, just north of Selinsgrove, to S.R. 0147 in West Chillisquaque Township, Northumberland County, just south of the interchange between S.R. 0147 and S.R. 0045. The CSVT Project will reduce congestion on study area roadways, improve safety and accessibility, and support the expected population and economic growth in the Central Susquehanna Valley area of Snyder, Union, and Northumberland Counties, Pennsylvania.

This analysis includes Section 2, the northern section, of the project comprised of the River Crossing 5 (RC5) Preferred Alternative located in Union and Northumberland Counties. The RC5 alternative extends from just south of the proposed interchange at S.R. 0015 near Winfield to S.R. 0147, south of the S.R. 0147/Route 45 interchange (northern terminus). Noise abatement in the form of a noise barrier was proposed for one location during the Alternatives Analysis Phase of the project in February 2003. Due to the significant length of time that has passed, changes in Federal Highway Administration (FHWA) and PennDOT noise regulations, and the advancements in prediction software over what was used during that analysis (STAMINA 2.0/OPTIMA vs. TNM 2.5), a complete re-analysis of the RC5 corridor has been conducted.

This report addresses the potential for noise impacts based on the noise analysis performed during the final design engineering phase of this project. Traffic noise impact analysis and abatement measures were evaluated according to the methodology and procedures set forth by the FHWA in Federal-Aid Policy Guide Title 23 Code of Federal Regulations, Part 772, "Procedures for Abatement of Highway Traffic Noise and Construction Noise" (July 2010); and the Pennsylvania Department of Transportation (PennDOT) in the *Project Level Highway Traffic Noise Handbook, Publication No. 24* (November 2015).

This effort has focused on all noise sensitive land uses in proximity to the proposed roadway alignment. During field reconnaissance it was observed that property acquisitions had taken place within two Noise Study Areas (NSAs) identified in the Noise Monitoring Work Plan (NSA 15 and NSA 16); therefore, these NSAs were removed from further analysis. In addition, due to the location of NSA 1 to the proposed alignment, it has been removed from this analysis and will be included in its entirety during the final design analysis for the southern section of the CSVT project. A total of 20 NSAs were retained for this analysis, and noise monitoring was conducted at 46 representative sites within the project study area in August 2014. The monitoring data were used to develop computer models capable of predicting the Worst-Case noise levels for existing and future roadway conditions. When Existing Worst-Case traffic is applied, noise levels were predicted to range from 34 decibels (dB[A]) to 72 dB(A), with levels at or above the requisite Noise Abatement Criteria (NAC) for the specific land use at 16 receptors involving six of the 20 NSAs retained for this analysis.

Travel volumes are expected to increase by 1.5 percent for cars and 3 percent for heavy vehicles annually from 2014 to the design year 2044; traffic data is found in Appendix B. The 2044 No-

i

Build traffic noise levels throughout the project area range from 37 dB(A) to 76 dB(A), with an average increase of 3 dB(A) over TNM-calculated existing conditions. The geographic concentration of elevated noise levels is consistent with those identified in the Existing Worst-Case scenario.

The existing conditions noise model was then modified to incorporate the proposed alternative design as well as changes to the existing roadways and the surrounding topography. This revised model was used to predict design year (2044) Build traffic noise levels at all of the monitored and modeled-only receptor locations. With the proposed improvements, 2044 Build traffic noise levels through the corridor range from 36 dB(A) to 77 dB(A), with an average increase of 8 dB(A) over the predicted existing conditions.

Design year traffic noise impacts were identified within 14 of the 20 NSAs. Therefore, abatement consideration is warranted for NSAs 2, 3, 5, 6, 7, 8, 9, 12, 14, 17, 18, 19, 20, and 22 within the project corridor. No traffic noise impacts were identified for NSAs 4, 10, 11, 13, 21, and 23. NSAs where no impacts were identified do not warrant abatement consideration; therefore, no further analysis was performed for those NSAs.

Since noise impacts have been identified, this study included an evaluation of noise abatement. Alternative forms of abatement can be effective under certain circumstances. These include acquisition of additional right-of-way (ROW) for installing barriers or earthen berms, inclusion of traffic control measures, and modification of the alignment. Given the nature of the proposed roadway through the project area, restrictions on travel speeds or truck traffic utilization to control noise would not serve the roadway's intended function and would be difficult to enforce. Therefore, this study focused on vertical noise barriers as the only abatement consideration.

Abatement in the form of noise barriers was investigated for each NSA that was identified to contain an impacted receptor. Noise barriers were found to provide feasible mitigation to receptors within six of the 14 impacted NSAs, with average noise reductions ranging from 5 dB(A) to 11 dB(A). Table 1 provides a summary of optimized noise barriers that were considered for each of the impacted NSAs. None of the barriers investigated for this analysis were determined to meet all of the criteria for reasonableness according to the guidance established within PennDOT's Publication No. 24. Therefore, no barriers are recommended for any of the impacted NSAs within the northern section of the CSVT project. Details for all of the investigated noise barriers can be found in Section 5.0 and the appendices of this document.

All impacts to NSA 12 have been determined to originate from the existing S.R. 0147 roadway. The proposed CSVT roadway and the relocated Ridge Road provide no traffic noise influence to these receptors. As such, no feasible noise barrier could be designed for NSA 12 without restricting direct driveway access to the four residential properties identified as being impacted. Therefore, no barrier is presented in Table 1 for this NSA.

I une I. Munimul V of Monse Anulement Anulysis.

Fossible and Possonable Criteria	NSA 2	NSA 3	NSA 5	NSA 6	NSA 7	NSA 8	NSA 9
reasible and Reasonable Criteria:	Optimized Barrier						
Barrier Area (ft ²)	15,001	84,005	33,072	29,280	19,152	14,316	44,256
Total Number of Impacted Receptors	2	10	24	6	6	1	6
Impacted Receptors Receiving ≥ 5 dB(A) Insertion Loss	0	9	1	4	1	0	4
Percent of Impacted Receptors Receiving ≥ 5 dB(A) Insertion Loss	0%	90%	4%	67%	17%	0%	67%
Is the Barrier Feasible Based upon 5 dB(A) Reduction Criteria (Yes/No)?	Νο	Yes	Νο	Yes	Νο	Νο	Yes
Total Number of Benefited Receptors (All Receptors Receiving ≥ 5 dB[A] Insertion Loss)	0	9	1	4	1	0	4
Barrier Square Footage per Benefited Receptor (S.F./B.R.)	15,001	9,334	33,072	7,320	19,152	14,316	11,064
Is the Barrier Reasonable from a S.F./B.R. standpoint (\leq 2,000 ft ²) (Yes/No)?	Νο						
Average Noise Reduction for Benefited Receptors (dB[A])	0	5	6	5	5	0	6
Is 7 dB(A) Insertion Loss goal met for at least one Impacted Receptor (Yes/No)?	Νο	Νο	Νο	Νο	Νο	Νο	Yes
Total Barrier Length (ft)	1,400	3,400	3,216	3,024	1,344	1,081	2,688
Barrier Height Range (ft)	7 to 12	21 to 25	4 to 10	6 to 10	11 to 19	8 to 14	10 to 20
Average Barrier Height (ft)	10.7	24.7	10.3	9.7	14.3	13.2	16.4

Note: All noise levels, including calculated comparisons, averages, and insertion losses, are calculated to the tenth of a dB(A) and then rounded to the nearest whole number for presentation purposes.

Feasible and Reasonable Criteria:	NSA 14 Optimized Barrier	NSA 17 Optimized Barrier	NSA 18 Optimized Barrier	NSA 19 Optimized Barrier	NSA 20 Optimized Barrier	NSA 22 Optimized Barrier
Barrier Area (ft ²)	31,679	32,833	19,392	41,519	27,552	24,672
Total Number of Impacted Receptors	2	4	1	4	3	6
Impacted Receptors Receiving ≥ 5 dB(A) Insertion Loss	0	0	1	3	1	5
Percent of Impacted Receptors Receiving ≥ 5 dB(A) Insertion Loss	0%	0%	100%	75%	33%	83%
Is the Barrier Feasible Based upon 5 dB(A) Reduction Criteria (Yes/No)?	Νο	Νο	Yes	Yes	Νο	Yes
Total Number of Benefited Receptors (All Receptors Receiving ≥ 5 dB[A] Insertion Loss)	0	0	2	4	1	6
Barrier Square Footage per Benefited Receptor (S.F./B.R.)	31,679	32,833	9,696	10,380	27,552	4,112
Is the Barrier Reasonable from a S.F./B.R. standpoint (≤ 2,000 ft ²) (Yes/No)?	Νο	Νο	Νο	Νο	Νο	Νο
Average Noise Reduction for Benefited Receptors (dB[A])	0	0	6	8	6	11
Is 7 dB(A) Insertion Loss goal met for at least one Impacted Receptor (Yes/No)?	Νο	Νο	Yes	Yes	Νο	Yes
Total Barrier Length (ft)	1,776	2,736	1,008	1,920	1,248	1,824
Barrier Height Range (ft)	14 to 21	9 to 14	15 to 20	14 to 25	15 to 25	8 to 15
Average Barrier Height (ft)	17.8	12.0	19.2	21.6	22.1	13.5

Note: All noise levels, including calculated comparisons, averages, and insertion losses, are calculated to the tenth of a dB(A) and then rounded to the nearest whole number for presentation purposes.

TABLE OF CONTENTS

Table of Contents i List of Illustrations v 1.0 INTRODUCTION 2.0 METHODOLOGY 2.1 Analytical Procedures 2.2 Evaluation Criteria 2.2.1 Warranted Criteria 2.2.2 Feasibility Criteria 2.2.3 Reasonableness Criteria 2.3 Noise Abatement Measures	i
List of Illustrations	V
1.0 INTRODUCTION. 2.0 METHODOLOGY 2.1 Analytical Procedures 2.2 Evaluation Criteria 2.2.1 Warranted Criteria 2.2.2 Feasibility Criteria 2.2.3 Reasonableness Criteria 2.3 Noise Abatement Measures	i
1.0 INTRODUCTION. 2.0 METHODOLOGY	
2.0 METHODOLOGY 2.1 Analytical Procedures 2.2 Evaluation Criteria 2.2.1 Warranted Criteria 2.2.2 Feasibility Criteria 2.2.3 Reasonableness Criteria 2.3 Noise Abatement Measures	1
 2.1 Analytical Procedures 2.2 Evaluation Criteria 2.2.1 Warranted Criteria 2.2.2 Feasibility Criteria 2.2.3 Reasonableness Criteria 2.3 Noise Abatement Measures 	2
 2.2 Evaluation Criteria 2.2.1 Warranted Criteria 2.2.2 Feasibility Criteria 2.2.3 Reasonableness Criteria 2.3 Noise Abatement Measures 	2
 2.2.1 Warranted Criteria 2.2.2 Feasibility Criteria 2.2.3 Reasonableness Criteria 2.3 Noise Abatement Measures 	4
 2.2.2 Feasibility Criteria 2.2.3 Reasonableness Criteria 2.3 Noise Abatement Measures 	4
 2.2.3 Reasonableness Criteria 2.3 Noise Abatement Measures 	5
2.3 Noise Abatement Measures	5
	5
3.0 EXISTING HIGHWAY TRAFFIC NOISE ENVIRONMENT (MONITORED	
DATA)	7
3.1 Identification of Noise Study Areas	7
3.1.1 Noise Study Area 2 (see Figure 2A)	3
3.1.2 Noise Study Area 3 (see Figure 2A)	3
3.1.3 Noise Study Area 4 (see Figure 2A)	3
3.1.4 Noise Study Area 5 (see Figure 2B)	3
3.1.5 Noise Study Area 6 (see Figure 2B)	3
3.1.6 Noise Study Area 7 (see Figures 2B and 2C))
3.1.7 Noise Study Area 8 (see Figures 2B and 2C))
3.1.8 Noise Study Area 9 (see Figure 2C))
3.1.9 Noise Study Area 10 (see Figure 2C))
3.1.10 Noise Study Area 11 (see Figure 2C))
3.1.11 Noise Study Area 12 (see Figure 2C))
3.1.12 Noise Study Area 13 (see Figure 2D))
3.1.13 Noise Study Area 14 (see Figure 2D))
3.1.14 Noise Study Area 17 (see Figure 2E))
3.1.15 Noise Study Area 18 (see Figure 2E) \dots)
3.1.16 Noise Study Area 19 (see Figures 2E and 2F)) 1
3.1.1/ Noise Study Area 20 (see Figures 2E and 2F)	l 1
3.1.18 Noise Study Area 21 (see Figure 2F)	l 1
3.1.19 Noise Study Area 22 (see Figure 24)	1 1
2.2 Short Torm Noise Monitoring	L 1
5.2 Short-Term Noise Monitoring	I
4.0 FUTURE HIGHWAY TRAFFIC NOISE ENVIRONMENT (EXISTING AND EUTURE MODELED)	5
FUTURE MODELED) 1 Validation of Noise Modeling	5 5
4.2 I oudest-Hour TNM Calculations	, 6
4.2 1 Existing TNM-Calculated Sound Levels	י פ
4.2.2 Future (2044) No-Build Condition TNM-Calculated Sound Levels 2	, ג
4.2.3 Future (2044) Build Condition TNM-Calculated Sound Levels	ŝ

	ALI 51	Mitigation Alternatives	29
	5.2	Noise Barrier Evaluation	
	-	5.2.1 Detailed Noise Barrier Descriptions	
		5.2.2 Summary of Results and Recommendations	69
6.0	CON	STRUCTION NOISE CONSIDERATION AND MITIGATION	
	ALT	ERNATIVES	70
= 0	CUM	MADY AND CONCLUCIONS	71

Bibliography

Appendices

Appendix A:	24-Hour and Short-Term Monitoring Data
Appendix B:	Traffic Data
Appendix C:	Figures
Appendix D:	Warranted, Feasible, and Reasonable Worksheets
Appendix E:	List of Preparers
	-

LIST OF ILLUSTRATIONS

Figures

1.	Project Location Map	Appendix C
2A to 2F.	Noise Study Areas	Appendix C

Tables

Table 1. Summary of Noise Abatement Analysis	iii
Table 2. FHWA Noise Abatement Criteria (NAC) Hourly A-Weighted Sound Level - Decibe	els
(dB[A])	. 5
Table 3. Validation Results (Monitored vs. TNM-Calculated Sound Levels).	17
Table 4.TNM-Calculated Existing (2014) and Future (2044) Loudest-Hour Sound Levels	19
Table 5. NSA 2 – Barrier Analysis Results	33
Table 6. NSA 3 – Barrier Analysis Results	36
Table 7. NSA 5 – Barrier Analysis Results	39
Table 8. NSA 6 – Barrier Analysis Results	42
Table 9. NSA 7 – Barrier Analysis Results	45
Table 10. NSA 8 – Barrier Analysis Results	48
Table 11. NSA 9 – Barrier Analysis Results	51
Table 12. NSA 14 – Barrier Analysis Results	55
Table 13. NSA 17 – Barrier Analysis Results	56
Table 14. NSA 18 – Barrier Analysis Results	59
Table 15. NSA 19 – Barrier Analysis Results	62
Table 16. NSA 20 – Barrier Analysis Results	65
Table 17. NSA 22 – Barrier Analysis Results	68

1.0 Introduction

1.0 INTRODUCTION

The Pennsylvania Department of Transportation (PennDOT) Engineering District 3-0 has initiated the final design for the construction of the Central Susquehanna Valley Transportation Project (CSVT). The CSVT Project is proposed as an approximate 13-mile, four-lane, limited access highway from the existing Selinsgrove Bypass (U.S. Routes 11/S.R. 0015) in Monroe Township, Snyder County, just north of Selinsgrove, to S.R. 0147 in West Chillisquaque Township, Northumberland County, just south of the interchange between S.R. 0147 and S.R. 0045 (Figure 1, Appendix C). The CSVT Project will reduce congestion on study area roadways, improve safety and accessibility, and support the expected population and economic growth in the Central Susquehanna Valley area of Snyder, Union, and Northumberland Counties, Pennsylvania.

This analysis includes Section 2, the northern section, of the project comprised of the River Crossing 5 (RC5) Preferred Alternative located in Union and Northumberland Counties. The RC5 alternative extends from just south of the proposed interchange at S.R. 0015 near Winfield to S.R. 0147, south of the S.R. 0147/Route 45 interchange (northern terminus). Noise abatement in the form of a noise barrier was proposed for one location during the Alternatives Analysis Phase of the project in February 2003. Due to the significant length of time that has passed, changes in Federal Highway Administration (FHWA) and PennDOT noise regulations, and the advancements in prediction software over what was used during that analysis (STAMINA 2.0/OPTIMA vs. TNM 2.5), a complete re-analysis of the RC5 corridor has been conducted.

This report addresses the potential for noise impacts based on the noise analysis performed during the final design engineering phase of this project. The purpose of the traffic noise study is to 1) determine if project-related noise impacts will occur, and 2) determine whether noise abatement for affected areas in the form of noise barriers or other mitigation measures would be warranted, feasible, and reasonable, based upon FHWA and PennDOT criteria.

2.0 Methodology

2.0 METHODOLOGY

Traffic noise impact analysis and abatement measures were evaluated according to the methodology and procedures set forth by the FHWA in Federal-Aid Policy Guide Title 23 Code of Federal Regulations, Part 772, *Procedures for Abatement of Highway Traffic Noise and Construction Noise* (July 2010), and PennDOT in the *Project Level Highway Traffic Noise Handbook, Publication No. 24* (November 2015).

Per FHWA/PennDOT noise guidance, the construction of a highway on a new alignment qualifies as a Type I project. A Type I project, per PennDOT's *Publication No. 24* (November 2015), is a project considered for noise abatement that involves the construction of a highway on a new location or the physical alteration of an existing highway, which significantly changes either the horizontal or vertical alignment or increases the number of through-traffic lanes.

2.1 Analytical Procedures

Noise studies involve monitoring and modeling components. Noise monitoring for this project was conducted at 46 representative receptor locations dispersed throughout the 20 NSAs located within the project corridor. The noise short-term monitoring was performed in August 2014 using four RION NL-22 sound level meters. To ensure accurate readings, the meters were field calibrated prior to each daily monitoring session with the RION sound level meters' internal calibrators. These monitors are laboratory calibrated annually to ensure accurate recordings of sound level data. The laboratory calibration certificates are included in Appendix A. To ensure a free-flowing traffic noise source capable of reproduction within the noise models, periods of peak traffic congestion were noted and avoided for use as monitoring sessions. "Typical" free-flow conditions were present during all monitoring periods. Short-term monitoring is described in Section 3.2 of this report.

Additionally, 24-hour monitoring was conducted at four locations between August 20 and August 22, 2014. On August 20, 2014, one meter was placed in NSA 2 on the southbound side of S.R. 0015; another was placed in NSA 3 on the northbound side of S.R. 0015. On August 21, 2014, one meter was placed in NSA 22 on the southbound side of S.R. 0147, and the other in NSA 21 on the northbound side of S.R. 0147 (refer to Figures 2A and 2F in Appendix C). The

24-hour data revealed that noise levels along the S.R. 0015 range from 61 dB(A) to 78 dB(A). The peak noise hour identified for S.R. 0015 was approximately between 3:00 PM and 4:00 PM. In addition, the data further revealed significant variations throughout the daytime hours (approximately 4 to 8 dB[A] between 4:00 AM to 10:00 PM).

The 24-hour data for S.R. 0147 revealed that noise levels along S.R. 0147 range from 70 dB(A) to 76 dB(A). The peak noise hour identified for S.R. 0147 was approximately between 3:00 PM and 5:00 PM. In addition, the data further revealed little variation in the noise levels throughout the daytime hours (approximately 3 dB[A] between 7:00 AM to 10:00 PM).

In order to accurately validate the traffic noise model, comprehensive traffic data were gathered concurrent to the short-term monitoring periods (Appendix A). Traffic speeds, number of vehicles, and compositions were noted during the monitoring periods, allowing for accurate computer model validation. See Section 4.1 for details regarding the noise model validation process. Once a model is validated, it allows for accurate prediction of Existing and Future No-Build and Build Worst-Case traffic noise impacts. Additionally, other significant localized factors affecting the recorded noise levels were noted, such as non-traffic noise sources (e.g., aircraft flyovers, train horns, barking dogs, etc.) and intervening terrain.

The FHWA, under the U.S. Department of Transportation (USDOT), has developed and refined the methodology employed to model and predict traffic noise levels in this study. The latest computer model, the FHWA Traffic Noise Model version 2.5 (TNM), predicts highway traffic noise levels at user-defined receptors and aids in the design of highway noise barriers. TNM includes a database of speed-related noise emission levels for a variety of vehicle types (automobiles, medium trucks, heavy trucks, buses, and motorcycles). In addition, TNM contains a database of emission levels that accounts for the effects of accelerating vehicles, such as those affected by traffic control devices (e.g., stop signs, signals, or on-ramps) as well as the effects of roadway gradients. Sound propagation is computed by accounting for the effects of ground and atmospheric absorption, divergence (i.e., geometric spreading of sound energy over distance), topography, man-made barriers, vegetation, and rows of buildings. To ensure a high level of accuracy, all TNM databases and calculations are based on 1/3-octave band data, and the results are recombined to give noise levels in the A-weighted dB(A).

TNM enables the user to evaluate a variety of traffic conditions and to develop and analyze proposed abatement. TNM model validation was completed according to PennDOT procedures prior to modeling future conditions. Predicted noise levels initially generated in TNM from the traffic data collected during field monitoring are compared to the field measured noise levels to ensure that the model is reasonably validated (within ± 3 dB[A]) to the observed site conditions. Predictions are then made using the "Worst-Case" assumptions, including peak-hour traffic data provided by PennDOT and The Burns Group (Appendix B). Based on existing peak-hour travel demand, roadway capacity data, and field observation, it was assumed that travel speeds are near the posted speed. Therefore, the traffic noise model used the posted speed plus 5 miles per hour (mph) for the Existing Worst-Case condition and the Future No-Build and Build conditions throughout the project corridor.

2.2 Evaluation Criteria

The evaluation criteria followed the methodologies and criteria specified in PennDOT's Publication No. 24 (November 2015). Under state and federal guidelines, noise abatement is considered if it is warranted (noise levels approaching or exceeding the abatement criteria). Determinations are evaluated following the identification of areas warranting abatement consideration, feasibility (constructability and effectiveness) of proposed abatement, and reasonableness (square feet/benefit). For this study, the existing year (2014) and the design year (2044) traffic noise levels were used to determine traffic noise impacts through the corridor.

2.2.1 Warranted Criteria

Noise abatement consideration is warranted if a noise impact is identified. A noise impact occurs when the existing or predicted level "approaches or exceeds" the FHWA's NAC (Table 2). The listed activity groups were established by the FHWA based on a variety of noise-sensitive land uses. Noise-sensitive land usage in this project area primarily consists of Activity Group B (Residential). PennDOT defines the approach criterion as 1 dB(A) less than the FHWA NAC. Therefore, there is a traffic noise impact if predicted exterior noise levels are 66 dB(A) or greater

for Activity Group B noise-sensitive land usage. Alternatively, the noise policy also considers properties as impacted if there is a 10 dB(A) or more increase over existing traffic noise levels even if the absolute level falls below the activity groups NAC. This type of impact is addressed under the policy's substantial increase criteria. For this project the impacts identified are a result of traffic noise levels approaching or exceeding the activity group's NAC as well as exceeding the substantial increase criterion.

Activity	Activity Criteria ¹	Evaluation	Description
Group	Leq(h)	Location	
А	57	Exterior	Lands on which serenity and quiet are of extraordinary significance and serve an important public need and where the preservation of those qualities is essential if the area is to continue to serve its intended purposes.
B^2	67	Exterior	Residential.
C^2	67	Exterior	Active sports areas, amphitheaters, auditoriums, campgrounds, cemeteries, day care centers, hospitals, libraries, medical facilities, parks, picnic areas, places of worship, playgrounds, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, recreation areas, Section 4(f) sites, schools, television studios, trails, and trail crossings.
D	52	Interior	Auditoriums, day care centers, hospitals, libraries, medical facilities, places of worship, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, schools, and television studios.
E^2	72	Exterior	Hotels; motels; offices; restaurants/bars; and other developed lands, properties, or activities not included in A-D or F.
F			Agriculture, airports, bus yards, emergency services, industrial, logging, maintenance facilities, manufacturing, mining, rail yards, retail facilities, shipyards, utilities (water resources, water treatment, electrical), and warehousing.
G			Undeveloped lands that are not permitted.

Table 2. FHWA Noise Abatement Criteria (NAC) Hourly A-Weighted Sound Level – Decibels (dB[A]).

Source: Title 23 Code of Federal Regulations, Part 772 "Procedures for Abatement of Highway Traffic Noise and Construction Noise," Final Rule.

- 1. The Leq(h) Activity Criteria values are for impact determination only, and are not design standards for noise abatement measures.
- 2. Includes undeveloped lands permitted for this activity category.

2.2.2 Feasibility Criteria

Feasibility deals primarily with acoustical and engineering considerations. Effective abatement is considered feasible if the predicted insertion loss (i.e., reduction in noise level as a result of the proposed abatement) is at least 5 dB(A) for the majority (50 percent or greater) of the impacted

sites. Additionally, a variety of engineering constraints must be considered when determining the feasibility of the proposed abatement. Engineering considerations include restrictions to vehicular or pedestrian traffic (including driveways); safety concerns (such as sight distances or recovery zones); barrier constructability and maintainability; utility and drainage impacts; and overall adverse social, economic, and environmental effects.

2.2.3 Reasonableness Criteria

Reasonableness determination primarily focuses on a maximum square foot per benefited receptor (Max SF/BR) measurement to determine the relative value of the proposed abatement solution. PennDOT's noise barrier cost reasonableness value is based on a Max SF/BR value of 2,000 square feet. The square footage of a barrier is based on its length multiplied by its height above the finished ground at its base to the top elevation. The benefited receptor values are determined by counting all receptors receiving a 5 dB(A) or greater insertion loss (IL). Although at least a 5 dB(A) IL for the majority of receptors is required to meet the feasibility criteria, the proposed barrier must reduce noise levels by at least 7 dB(A) for at least one benefited receptor. It is desirable to provide this IL for additional impacted receptors while conforming to the Max SF/BR criteria and, if justified, by a "point of diminishing returns" evaluation. While optimizing a proposed noise barrier, the desired abatement goals should be evaluated in terms of establishing noise reductions for impacted receptors only.

2.3 Noise Abatement Measures

A variety of measures can be considered to address an identified noise impact. Placement of vertical noise barriers within the right-of-way (ROW) are most commonly recommended and were considered in this analysis due to their minimal spatial requirements.

Alternative actions can be effective under certain circumstances. These include acquisition of additional ROW for installing barriers or earthen berms, inclusion of traffic control measures, and modification of the alignment.

3.0 Existing Highway Traffic Noise Environment (Monitored Data)

3.0 EXISTING HIGHWAY TRAFFIC NOISE ENVIRONMENT (MONITORED DATA)

3.1 Identification of Noise Study Areas

PennDOT Publication No. 24 (November 2015) states that NSAs

should be delineated as areas of common highway traffic noise influence throughout the entire project limits of the proposed transportation improvement project. NSA boundaries typically do not traverse over any major and/or significant highway traffic noise influence sources (i.e., existing or proposed roadways). Grouping common areas into NSAs also assists in evaluating mitigation, organizing reports, and facilitating discussions.

Following this guidance, the project area was organized into 23 NSAs from south to north, with 13 NSAs located on the southbound side of the proposed roadway and 10 NSAs located on the northbound side. All NSAs were identified in a Noise Monitoring Work Plan that was reviewed and approved by PennDOT in August 2014 (A.D. Marble & Company 2014). As described in further detail below, during field reconnaissance, it was observed that property acquisitions had taken place within NSA 15 and NSA 16; therefore, these NSAs were removed from further analysis. Additionally, due to the location of NSA 1 at the southernmost portion of the proposed alignment, it was decided that it would be best that it be included in its entirety during the final design analysis for the southern section of the CSVT project. For this final design analysis, the 20 NSAs retained resulted in 11 NSAs located on the southbound side of the proposed roadway and 9 NSAs located on the northbound side. Figures 2A through 2F are located in Appendix C and present the limits of the 20 NSAs retained for this analysis; each NSA is described below.

For this analysis, NSA boundaries extended approximately 500 feet from the edge-of-shoulder of the proposed roadway alignment. The organization of land use into NSAs does not affect the mitigation screening process results, as it is common practice to evaluate mitigation alternatives across NSA boundaries if and when appropriate. This same rationale applies to the subdivision of distinct communities within NSAs where it may be appropriate to consider them independently from one another. In addition, monitoring locations beyond the 500-foot study area boundary were identified for several NSAs within the project area. Monitoring locations M-

07, M-09, M-11, M-30, M-33 and M-42 were included in the monitoring plan in order to ensure valid modeling results for identifying potential impacts and benefits beyond the standard 500-foot study area boundary.

3.1.1 Noise Study Area 2 (see Figure 2A)

NSA 2 is located on the northbound side of the proposed roadway between S.R. 0015 and the southern end of the RC5 alignment. NSA 2 includes two single-family residential homes fronting S.R. 0015. The NSA is bound by agricultural fields to the north and woodlands to the south. NSA 2 is classified as land use Category B.

3.1.2 Noise Study Area 3 (see Figure 2A)

NSA 3 is located on the northbound side of S.R. 0015 and adjacent to the proposed on/off ramps for the RC5 and S.R. 0015 interchange. NSA 3 includes nine single-family homes located along County Line Road (T519) and T362. The NSA is bound by Swartz Ultimate Collision Repair to the south and a large forested area to the north. NSA 3 is classified as land use Category B.

3.1.3 Noise Study Area 4 (see Figure 2A)

NSA 4 is located on the southbound side of S.R. 0015. This NSA includes three single-family residential homes at the end of the Ridge Road cul-de-sac. The NSA is bound by a forested area to the south and agricultural fields to the north. NSA 4 is classified as land use Category B.

3.1.4 Noise Study Area 5 (see Figure 2B)

NSA 5 is located on the southbound side of the proposed roadway. NSA 5 consists of two singlefamily residential properties situated along Silo Lane. The NSA is bound by agricultural fields to the southwest, the Susquehanna River to the northeast, and the River Edge RV Camp and Marina to the north. NSA 5 is classified as land use Category B.

3.1.5 Noise Study Area 6 (see Figure 2B)

NSA 6 is located northbound side of the proposed roadway. NSA 6 consists of two single-family residential properties situated along Lees Lane. The NSA is bound by agricultural fields to the southwest and Susquehanna River to the northeast. NSA 6 is classified as land use Category B.

3.1.6 Noise Study Area 7 (see Figures 2B and 2C)

NSA 7 is located adjacent to the northbound side of the proposed roadway. This NSA consists of four single-family properties situated along S.R. 0147 and Arts Way. The NSA is bound by S.R. 0147 to the southwest and agricultural fields to the north. NSA 7 is classified as land use Category B.

3.1.7 Noise Study Area 8 (see Figures 2B and 2C)

NSA 8 is located adjacent to the southbound side of the proposed roadway. This NSA consists of one single-family property situated along S.R. 0147. The NSA is bound by S.R. 0147 to the south and agricultural fields to the north. NSA 8 is classified as land use Category B.

3.1.8 Noise Study Area 9 (see Figure 2C)

NSA 9 is located adjacent to the southbound side of the proposed roadway near the proposed Ridge Road interchange. NSA 9 includes five single-family properties situated on Blossom Hill Road and Ridge Road. NSA 9 is classified as land use Category B.

3.1.9 Noise Study Area 10 (see Figure 2C)

NSA 10 is located adjacent to the southbound side of S.R. 0147 and the proposed relocation of Ridge Road. NSA 10 includes one single-family property and two commercial properties with no associated outdoor use activities situated on S.R. 0147. NSA 10 is classified as land use Category B.

3.1.10 Noise Study Area 11 (see Figure 2C)

NSA 11 is located adjacent to the northbound side of S.R. 0147 and the proposed relocation of Ridge Road. NSA 11 includes the Ridgeway Evangelical Church property. There is no outdoor use associated with NSA 11, and it is, therefore, classified as land use Category D.

3.1.11 Noise Study Area 12 (see Figure 2C)

NSA 12 is located adjacent to the northbound side of S.R. 0147 and to the north of the proposed relocation of Ridge Road. NSA 12 includes four single-family properties situated along S.R.

0147 and Libeck Road. The NSA is bound by Libeck Road to the north, agricultural fields to the south, and a forested area to the east. NSA 12 is classified as land use Category B.

3.1.12 Noise Study Area 13 (see Figure 2D)

NSA 13 is located adjacent to the northbound off-ramp of the proposed roadway at the proposed Ridge Road interchange. NSA 13 includes five single-family properties situated on the existing Ridge Road. The NSA is bound by the relocated Ridge Road to the north and agricultural fields to the south. NSA 13 is classified as land use Category B.

3.1.13 Noise Study Area 14 (see Figure 2D)

NSA 14 is located adjacent to the northbound on-ramp of the proposed roadway at the proposed Ridge Road interchange. NSA 14 includes seven single-family properties situated on the existing Ridge Road and Mirkwood Road. The NSA is bound by the relocated Ridge Road to the south and a forested area to the north. NSA 14 is classified as land use Category B.

3.1.14 Noise Study Area 17 (see Figure 2E)

NSA 17 is located adjacent to the southbound side of the proposed roadway. This NSA consists of five single-family properties situated along S.R. 0147 and Oak View Road. The NSA is bound by agricultural fields to the south and Oak View Road to the north. NSA 17 is classified as land use Category B.

3.1.15 Noise Study Area 18 (see Figure 2E)

NSA 18 is located adjacent to the northbound side of the proposed roadway. This NSA consists of two single-family properties situated along Acorn Drive. The NSA is bound by a forested area and agricultural fields to the south and the proposed relocation of Oak View Road to the north. NSA 18 is classified as land use Category B.

3.1.16 Noise Study Area 19 (see Figures 2E and 2F)

NSA 19 is located adjacent to the northbound side of the proposed roadway. This NSA consists of five single-family properties situated along Acorn Drive, Ryan Lane, and Hidden Paradise

Road. The NSA is bound by the proposed relocation of Oak View Road to the south and Hidden Paradise Road to the north. NSA 19 is classified as land use Category B.

3.1.17 Noise Study Area 20 (see Figures 2E and 2F)

NSA 20 is located adjacent to the southbound side of the proposed roadway. This NSA consists of two single-family properties situated along S.R. 0147 and Susquehanna Trail. The NSA is bound by the proposed relocation of Oak View Road to the south and agricultural fields to the north. NSA 20 is classified as land use Category B.

3.1.18 Noise Study Area 21 (see Figure 2F)

NSA 21 is located adjacent to the northbound side of the proposed roadway. This NSA consists of 13 single-family properties situated along Ridge Road (T568) and Chillisquaque Heights. The NSA is bound by Ridge Road (T568) to the south and a forested area to the north. NSA 21 is classified as land use Category B.

3.1.19 Noise Study Area 22 (see Figure 2F)

NSA 22 is located adjacent to the southbound side of the proposed roadway. This NSA consists of a place of worship with no area of outdoor use and 23 single-family properties situated along Keyser Road, Housels Run Road, and Sand Hill Road. The NSA is bound by Ridge Road (T568) to the south and a forested area to the north. NSA 22 is classified as land use Category B and D.

3.1.20 Noise Study Area 23 (see Figure 2A)

NSA 23 is located adjacent to County Line Road and Park Road. This NSA consists of three single-family properties situated along Park Road and one single-family property on County Line Road. NSA 23 is classified as land use Category B.

3.2 Short-Term Noise Monitoring

Short-term noise monitoring sessions, which are 15 minutes in duration, were conducted at 46 locations within the project study area from August 26, 2014 to August 28, 2014. The short-term monitoring locations are identified in the report tables and on the figures with an "M" followed

by a number. Figures 2A through 2F (Appendix C) show the locations of the noise monitoring sites and the defined limits for each NSA used for this analysis.

The objectives of the short-term noise measurements were to:

- Obtain noise measurement data used to "validate" the traffic-noise prediction modeling for each NSA, thereby increasing confidence in TNM-calculated noise levels;
- Obtain counted traffic data used as input for the TNM during validation of the noise modeling for each NSA; and
- Document existing ambient sound levels at noise study locations within each NSA.

The short-term measurement sites were selected according to their abilities to meet the following requirements:

- Represent noise-sensitive land uses within each NSA. Short-term measurement sites were selected to represent various categories or "clusters" of noise-sensitive receptors within each NSA. Distinguishing characteristics of various clusters included some or all of the following:
 - Distance to the proposed highway alignment;
 - Absence or presence of shielding (e.g., first-row vs. second-row receptors);
 - Roadway/receiver geometry (e.g., proposed roadway depressed or on-fill, receptors on hillside overlooking proposed roadway, presence of entrance/exit ramps, etc.); and
 - o Influence of other traffic-noise sources, such as local streets.
- When possible, represent areas of frequent human use. Alternatively, measurement sites were selected in areas that did not have frequent human use but were acoustically equivalent to nearby locations with frequent human use (e.g., on the grass along a side street or set back the same distance from the proposed roadway as the yard of the adjacent house);
- Give primary consideration to first-row receivers. Typically, traffic noise levels will be highest at the closest receivers and noise barriers will provide the greatest benefit at these locations; and

• Second-row and third-row locations. Additional measurements were conducted at these locations to assist in the noise modeling validation and in determining the effects of shielding.

For each site, these procedures were followed:

- The short-term measurements were conducted with ANSI Type 2 instruments with calibrations traceable to the National Institute of Standards and Technology (NIST);
- The sound level meters were field calibrated before and after each short-term measurement;
- Measurements were conducted for a minimum of 15-minute periods. Individual oneminute average sound levels (L_{eqs}) were recorded so that periods including events not representative of the ambient noise environment or not traffic-related could be separated or excluded. Specifically, notes on the site sketches were included to indicate potential periods of non-traffic noise influence (i.e., barking dogs and aircraft over-flights). The data collected for these individual periods were further scrutinized following the field monitoring to identify outlier data and potentially exclude these periods from the calculation of the overall average sound level;
- A short-term field measurement data sheet (see Appendix A) was completed for each measurement site;
- If present, abnormal weather data, including wind speed and direction, temperature, and relative humidity, were recorded during each measurement period to ensure requisite meteorological conditions for noise model validation. For example, monitoring should not be performed during periods of excessive wind, as this will potentially cause mechanical interference (microphone and windscreens) or abnormal noise propagation patterns;
- During each short-term noise measurement, simultaneous traffic volume and classification counts were conducted for all roads on which traffic was judged to make a significant contribution to the measured sound level at an individual site. Traffic volumes and classes were noted for each Traffic Monitoring Session (TMS) and can be found in Appendix A;

- No short-term measurements were conducted during periods of abnormal stop-and-go traffic or if the average speed was judged to vary significantly during the measurement period;
- No short-term measurements were conducted during periods when the roadway pavement was wet; and
- Noise meter location sketches were drawn to indicate approximate distances to known landmarks to allow for duplication of monitoring sites, if necessary. Significant variations in propagation path elevation (significant cut/fill) were depicted as cross sections where necessary.

4.0 Future Highway Traffic Noise Environment (Existing and Future

Modeled)

4.0 FUTURE HIGHWAY TRAFFIC NOISE ENVIRONMENT (EXISTING AND FUTURE MODELED)

4.1 Validation of Noise Modeling

The FHWA has developed a computer noise model that is used for traffic noise emissions prediction and abatement evaluation. As referenced in Section 2.1, the FHWA's TNM includes a database of speed-related noise emission levels for a variety of vehicle types (i.e., automobiles, medium trucks, and heavy trucks). TNM also includes a database of noise emission levels that accounts for acceleration noise on roadway facilities that would be associated with traffic control devices (stop lights, stop signs, tollbooths, and on-ramps) or gradient changes. TNM uses these emissions data to calculate sound energy propagation over distances and estimate noise levels at discrete locations. Ground and atmospheric absorption of sound energy, as well the spreading of energy over distance (divergence), are considered, as are the effects of man-made barriers, topography, vegetation, and rows of buildings. PennDOT Publication No. 24 stipulates the use of the most current version of TNM when assessing traffic noise levels for highway projects.

The TNM modeling for a specific project area is typically "validated" by comparison of TNMcalculated results with the field-measured noise data. PennDOT Publication No. 24 describes the purpose of modeling validation and describes the procedure. To help accomplish the modeling validation, simultaneous noise measurements and traffic counts were conducted during the 46 short-term measurements, as described in Section 3.2. The directional traffic counts included vehicle class identification broken down into cars, medium trucks, heavy trucks, buses, and motorcycles. Following the measurements, the short-term traffic counts were normalized to hourly volumes and used as input for the noise prediction model. Based on a comparison of measured and TNM-calculated sound levels, refinements were made to the TNM model to more accurately represent the acoustical landscape. Refinements included adjustments to variables within the propagation path, including but not limited to alterations of building row characteristics and adjustments to terrain lines and tree zones.

Table 3 presents the monitored and TNM-calculated noise levels for the 46 short-term measurement sites following refinement of the noise modeling. Note that the measured and

TNM-calculated sound levels do not represent the annual loudest-hour conditions. The prediction of the annual loudest-hour noise levels is discussed in Section 4.2 below.

PennDOT Publication No. 24, Section 2.5.3.3 states that "if the difference between the [monitored and TNM-calculated] values is less than \pm 3 dB(A), this is an indication that the model is within the accepted level of accuracy." Of the short-term monitoring locations, 42 of the 46 locations predicted noise levels within these prescribed parameters. This correlation between measured and TNM-calculated sound levels provides a high level of confidence in TNM's computations throughout the study area. In addition, the average difference between the calculated hourly L_{eq} and the measured L_{eq} results for the validated receptors was approximately 0.1 dB(A). This bias toward slight over-prediction implies that the noise model is appropriately conservative and would tend to slightly over-predict, rather than under-predict, noise impacts.

The four monitoring sites that were not able to be validated (M-07, M-29, M-32 and M-33) represent single-family residences located in NSA 3, NSA 17 and NSA 18, respectively. Despite best efforts, the receptors continued to under-predict by an average of 8 dB(A), 5 dB(A) under the accepted level for validation. Due to the remote location of these sites in comparison to contributing roadway noise sources, it was determined that the noise environment for these locations was not currently traffic noise influenced. With the exception of NSA 18, all of the other receptors located within the aforementioned NSAs did predict within +/- 3 dB(A); therefore, the model for NSA 3, NSA 17, and NSA 18 were determined to be valid. Monitoring data for receptor M-10, representing a single-family seasonal residence located within NSA 5 was corrupted during field monitoring. However, the predicted results for the monitoring location were consistent with the two closest representative sites also located within NSA 5; therefore, the model for NSA 5 was determined to be valid.

4.2 Loudest-Hour TNM Calculations

Following refinement and validation of the noise model, TNM was used to calculate loudesthour noise levels at the 46 monitored receptor locations and distributed throughout the 20 NSAs retained for the analysis. All significant sound propagation and shielding assumptions used in the

Table 3. Validation Results (Monitored vs. TNM-Calculated Sound Levels).

Pocoivor		Traffic		Monitored	TNM-Calculated	
I.D.	NSA	Session (TMS)	Receptor Address	Level (Leq[h])	Noise Level	Difference Over Monitored
M-02	2	3	Westbranch Hgwy (SR 0015) - SB	65	68	3
M-03	3	3	Westbranch Hgwy (SR 0015) - NB	57	60	3
M-04	3	1	2564 County Line Road	54	57	3
M-05	3	1	2506 County Line Road	52	53	1
M-06	3	1	1037 Mulls Hollow Road	48	45	-3
M-07	3	1	Gregory Drive	49	31	-18
M-08	4	3	Ridge Road	51	49	-3
M-09	5	4	Seven Kitchens Road	44	42	-2
M-10	5	4	Silo Lane	N/A	39	N/A
M-11	5	4	Rivers Edge R/V Park	43	40	-3
M-12	6	4	Lees Lane	42	39	-3
M-13	7	5	Susquehanna Trail (SR 0147)	65	68	3
M-14	7	5	Arts Way	59	58	0
M-15	7	5	Arts Way	48	51	3
M-16	8	5	1082 Susquehanna Trail (SR 0147)	58	61	2
M-17	9	6	145 Blossom Hill Road	42	45	3
M-18	9	6	Ridge Road	48	50	2
M-19	10	7	MCL Pool & Spa Services	60	60	0
M-20	11	6	Ridgeway Evangelical Church	57	57	0
M-21	12	6	Susquehanna Trail (SR 0147)	65	66	0
M-22	13	12	Ridge Road (Empty Lot)	54	53	-1
M-23	13	13	Ridge Road	48	53	1
M-24	14	12	Ridge Road (Empty Lot)	54	55	1
M-25	14	13	377 Ridge Road	53	55	2
M-26	14	13	155 Mirkwood Drive	47	47	0
M-29	17	7	Address Unknown	48	40	-8
M-30	17	7	Susquehanna Trail (SR 0147)	57	60	3
M-31	17	7	Susquehanna Trail (SR 0147)	54	55	1
M-32	18	11	Acorn Drive	50	45	-5
M-33	18	11	Acorn Drive	49	40	-9
M-34	19	11	Address Unknown	51	51	0
M-35	19	10	199 Ryan Lane	58	58	0
M-36	19	10	Ryan Lane	62	63	0
M-37	20	11	Address Unknown	58	58	-1
M-38	20	10	Susquehanna Trail (SR 0405)	60	62	2
M-39	21	8	Ridge Road (T568)	55	56	1
M-40	21	8	150 Chillisquequa Heights	55	57	2
M-41	21	8	70 Chillisquequa Heights	50	52	2
M-42	21	8	Ridge Road (T568)	41	43	2
M-43	22	10	Keyser Road	58	60	2
M-44	22	9	Sand Hill Road	53	55	2
M-45	22	9	231 Sand Hill Road	59	62	3
M-46	22	9	Housels Run Road	51	52	1
M-47	22	9	Housels Run Road	58	61	3
M-48	23	2	County Line Road	56	53	-3
M-49	23	2	3080 County Line Road	56	58	2

Note: All noise levels, including calculated comparisons, averages, and insertion losses, are calculated to the tenth of a dB(A) and then rounded to the nearest whole number for presentation purposes.

model "validation" phase were retained for the loudest-hour prediction modeling except where altered or otherwise rendered invalid due to proposed facility design changes. Section 2.2 of this report describes the TNM model, and Section 4.1 describes the validation procedure. For the purposes of screening the NSAs for impacts and the evaluation of abatement measures, 136 modeled-only receptor locations were added throughout the project area.

Table 4 provides the loudest-hour sound levels computed for existing (2014) and future (2044) conditions. The table is organized by NSA, starting at the southern end of the project area and proceeding northward. Traffic data for the loudest-hour computations for both existing and future conditions were developed through data made available by The Burns Group and provided by PennDOT. Appendix B of this report provides additional traffic details, including modeled traffic volumes, growth factors, and classification breakdown. Traffic volumes and speeds were developed in conjunction with the roadway design engineers to ensure consistent application for all design aspects of the project.

4.2.1 Existing TNM-Calculated Sound Levels

The validated noise models were used as the baseline for the calculation of existing (2014) loudest-hour noise levels. Field-observed traffic data were replaced in the models with the peak-hour data supplied by PennDOT. The 46 monitored receptor locations were incorporated as described above. In addition, 130 modeled-only receivers were added to the model representing each of the properties located within the study area.

TNM-calculated loudest-hour L_{eq} sound levels for the existing condition ranged from 34 to 72 dB(A) among all prediction sites. Typically, locations closest to the existing highway facilities had the highest TNM-calculated sound levels. In Table 4, receptor sites with loudest-hour sound levels approaching or exceeding the NAC as discussed in Section 2.2 are identified in red. L_{eq} sound levels of 66 dB(A) or higher approach or exceed the NAC for activity group B (residential) noise-sensitive outdoor land uses. Under the modeled existing conditions, 16 receptor locations are predicted to experience noise impacts during the loudest hour of the day. Noise impacts presently occur in six out of the 20 NSAs evaluated.

Table 4. TNM-Calculated Existing	(2014) and Future	(2044) Loudest-Hour	Sound Levels.
----------------------------------	-------------------	---------------------	---------------

				Future No-Build		Future Build (2044)		
- ·		Equivalent	Existing	(20	44)	(No Barrier)		
Receiver	NSA	Number of	Worst-Case		Difference		Difference	
I.D.		Dwelling Units	(2014)	Noise Level	Over	Noise Level	Over	
		_			Existing		Existing	
M-02	2	1	68	73	5	<i>69</i>	1	
2-01	2	1	72	76	5	73	1	
M-03	3	1	60	65	5	63	2	
M-04	3	1	57	62	5	63	5	
M-05	3	1	54	58	5	62	8	
M-06	3	1	46	50	5	52	6	
M-07	3	1	49	49	0	53	5	
3-01	3	1	63	68	5	65	2	
3-02	3	1	55	60	5	60	5	
3-03	3	1	47	52	5	56	10	
3-04	3	1	48	53	5	59	11	
3-05	3	1	44	49	5	54	10	
3-06	3	1	45	50	5	57	12	
3-07	3	1	40	45	5	52	12	
3-08	3	1	41	46	5	55	13	
3-09	3	1	40	44	5	52	12	
3-10	3	1	39	44	5	51	13	
3-11	3	1	40	44	5	54	14	
3-12	3	1	48	53	5	52	4	
3-13	3	1	41	46	5	51	11	
3-14	3	1	50	50	0	53	4	
3-15	3	1	49	50	1	53	5	
3-16	3	1	49	50	1	53	4	
3-17	3	1	49	49	0	54	5	
3-18	3	1	49	49	0	53	5	
3-19	3	1	49	50	1	54	5	
3-20	3	1	49	50	1	53	5	
M-08	4	3	50	55	5	56	6	
M-09	5	1	43	44	1	55	12	
M-10	5	0.57	42	44	2	58	16	
M-11	5	0.57	43	45	2	57	15	
5-01	5	0.57	41	43	2	55	13	
5-02	5	0.57	42	44	2	57	16	
5-03	5	0.57	40	42	2	56	16	
5-04	5	0.57	40	42	2	56	16	
5-05	5	0.57	40	42	2	56	16	
5-06	5	0.57	40	42	2	56	16	
5-07	5	0.57	40	42	2	56	16	
5-08	5	0.57	40	42	2	56	16	
5-09	5	0.57	40	42	2	56	16	
5-10	5	0.57	40	42	2	56	16	
5-11	5	0.57	40	42	2	56	16	
5-12	5	0.57	40	43	2	57	16	
5-13	5	0.57	40	42	2	56	16	
5-14	5	0.57	40	43	2	56	16	
5-15	5	0.57	41	43	2	56	16	

Note:

All noise levels, including calculated comparisons, averages, and insertion losses, are calculated to the tenth of a dB(A) and then rounded to the nearest whole number for presentation purposes.

⁺ Denotes an interior traffic noise level derived from applying the FHWA building noise reduction factor to the TNM generated exterior noise level.

Table 4. TNM-Calculated Existing	(2014) and Future	(2044) Loudest-Hour	Sound Levels.
----------------------------------	-------------------	---------------------	---------------

		Equivalent Number of	Existing Worst-Case	Future No-Build (2044)		Future Build (2044)	
Dessiver						(No Barrier)	
Receiver N	NSA				Difference		Difference
I.D.		Dwelling Units	(2014)	Noise Level	Over	Noise Level	Over
					Existing		Existing
5-16	5	0.57	41	43	2	56	15
5-17	5	0.57	41	43	2	56	15
5-18	5	0.57	41	43	2	56	16
5-19	5	0.57	41	43	2	56	15
5-20	5	0.57	41	43	2	57	16
5-21	5	0.57	41	43	2	56	15
5-22	5	0.57	41	43	2	56	15
5-23	5	0.57	42	44	2	56	15
5-24	5	0.57	42	44	2	56	15
5-25	5	0.57	42	44	2	56	15
5-26	5	0.57	42	44	2	56	14
5-27	5	0.57	42	44	2	56	14
5-28	5	0.57	42	44	2	56	15
5-29	5	0.57	42	44	2	57	15
5-30	5	0.57	42	44	2	57	15
5-31	5	0.57	42	44	2	57	15
5-32	5	0.57	42	44	2	57	15
5-33	5	0.57	42	44	2	57	15
5-34	5	0.57	42	44	2	57	15
5-35	5	0.57	42	45	2	57	15
5-30	5	0.57	42	44	2	57	15
5-37	5	0.57	43	45	2	57	14
5-30	5	0.57	45	45	2	57	14
	5	0.37	43	43	2	55	14
6-01	6	1	42	44	2	53	12
6-02	6	1	40	43	2	58	17
6-03	6	1	40	43	2	57	17
6-04	6	1	40	42	2	57	18
6-05	6	1	40	42	2	57	17
M-13	7	1	72	74	2	73	1
M-14	7	1	62	64	2	66	4
M-15	7	1	54	56	2	<i>69</i>	15
7-01	7	1	65	67	2	67	2
7-02	7	1	66	68	2	69	2
7-03	7	1	54	56	2	64	10
7-04	7	1	51	54	2	60	8
M-16	8	1	64	66	2	67	3
M-17	9	1	45	47	2	67	22
M-18	9	1	49	51	2	63	14
9-01	9	1	44	46	2	63	19
9-02	9	1	47	49	2	60	14
9-03	9	1	51	53	2	61	10
9-04	9	1	52	54	2	60	8
9-05	9	1	53	56	2	58	5
9-06	9	1	52	54	2	60	8

Note:

All noise levels, including calculated comparisons, averages, and insertion losses, are calculated to the tenth of a dB(A) and then rounded to the nearest whole number for presentation purposes.

⁺ Denotes an interior traffic noise level derived from applying the FHWA building noise reduction factor to the TNM generated exterior noise level.

Table 4. TNM-Calculated Existing (2	2014) and Future (2044	4) Loudest-Hour Sound Levels.
-------------------------------------	------------------------	-------------------------------

	NSA	Equivalent Number of	Existing Worst-Case	Future No-Build (2044)		Future Build (2044)	
Receiver						(No Barrier)	
					Difference		Difference
1.0.		Dwelling Units	(2014)	Noise Level	Over	Noise Level	Over
					Existing		Existing
9-07	9	1	55	58	2	59	4
9-08	9	1	58	60	2	60	2
9-09	9	1	62	64	2	63	1
9-10	9	1	63	65	2	65	2
9-11	9	1	63	65	2	64	1
9-12	9	1	66	<u>68</u>	2	67	1
M-19	10	1	64	66	2	65	1
M-20	11	1	34.4†	36.5†	2	35.6†	1
M-21	12	1	<i>69</i>	71	2	70	1
12-01	12	1	66	<u>68</u>	2	67	1
12-02	12	1	67	<u>69</u>	2	68	1
12-03	12	1	67	69	2	68	1
M-22	13	0	54	54	0	58	4
M-23	13	1	53	53	0	58	5
13-01	13	1	53	53	0	58	6
13-02	13	1	54	54	0	58	5
13-03	13	1	49	49	0	55	6
M-24	14	0	56	56	0	N/A	N/A
M-25	14	1	55	55	0	60	5
M-26	14	1	47	47	0	54	7
14-01	14	1	53	53	0	60	7
14-02	14	1	53	53	0	58	5
14-03	14	1	43	44	0	54	11
14-04	14	1	46	46	0	57	11
M-29	17	1	43	45	2	55	12
M-30	17	1	64	66	2	65	1
M-31	17	1	58	60	2	62	4
17-01	17	1	68	70	2	69	1
17-02	17	1	66	68	2	67	1
17-03	17	1	65	6/	2	66	1
17-04	17	1	63	65	2	65	2
17-05	17	1	58	60	2	62	4
IVI-32	10	1	47	49	2	50	18
IVI-55	10	1	42 54	44 56	2	50 67	0
N 25	19	1	54	50	2	64	15
IVI-33	19	1	55	67	3	60	5
10.01	19	1	60	67 62	э э	0 <i>3</i> 71	5 11
19-01	19	1	61	65	5	69	7
13-02 M-27	20	⊥ 1	61	62	3 7	61	/ 1
M-38	20	1	63	66	2	67	1
20-01	20	1	50	62	2	77	18
20.01	20	1	58	61	3	70	12
M-39	20	1	60	63	3	62	2
M-40	21	1	61	64	3	64	3
M-41	21	1	56	59	3	57	1

Note:

All noise levels, including calculated comparisons, averages, and insertion losses, are calculated to the tenth of a dB(A) and then rounded to the nearest whole number for presentation purposes.

⁺ Denotes an interior traffic noise level derived from applying the FHWA building noise reduction factor to the TNM generated exterior noise level.

Table 4. TNM-Calculated Existing	g (2014) and Future	(2044) Loudest-Hour	Sound Levels.
----------------------------------	---------------------	---------------------	---------------

				Future I	No-Build	Future Bu	ild (2044)
Beechury		Equivalent	Existing	(2044)		(No Barrier)	
Receiver	NSA	Number of	Worst-Case		Difference		Difference
I.D.		Dwelling Units	(2014)	Noise Level	Over	Noise Level	Over
					Existing		Existing
M-42	21	1	47	50	3	50	3
21-01	21	1	61	65	3	64	2
21-02	21	1	57	61	3	59	2
21-03	21	1	57	60	3	59	2
21-04	21	1	55	58	3	58	3
21-05	21	1	49	52	3	52	3
21-06	21	1	49	52	3	52	3
21-07	21	1	54	57	3	56	2
21-08	21	1	52	55	3	55	3
21-09	21	1	54	58	3	55	1
M-43	22	1	61	64	3	62	1
M-44	22	1	57	60	3	60	3
M-45	22	1	66	69	3	69	3
M-46	22	1	54	57	3	56	2
M-47	22	1	63	67	3	63	-1
22-01	22	1	63	66	3	64	2
22-02	22	1	65	69	3	66	1
22-03	22	1	41.1†	44.5†	3	44.2†	3
22-04	22	1	<u>68</u>	72	3	72	3
22-05	22	1	68	71	3	70	2
22-06	22	1	68	71	3	70	3
22-07	22	1	67	71	3	70	3
22-08	22	1	62	65	3	63	2
22-09	22	1	57	60	3	60	3
22-10	22	1	56	59	3	56	0
22-11	22	1	58	61	3	56	-2
22-12	22	1	57	60	3	56	-1
22-13	22	1	59	62	3	58	-1
22-14	22	1	54	57	3	58	4
22-15	22	1	54	57	3	57	3
22-16	22	1	54	57	3	55	1
22-17	22	1	56	59	3	55	0
22-18	22	1	55	58	3	54	-1
22-19	22	1	54	57	3	53	-1
M-48	23	1	53	53	0	57	4
M-49	23	1	58	58	0	58	0
23-01	23	1	53	53	0	53	0
23-02	23	1	58	58	0	58	0

Note:

All noise levels, including calculated comparisons, averages, and insertion losses, are calculated to the tenth of a dB(A) and then rounded to the nearest whole number for presentation purposes.

[†] Denotes an interior traffic noise level derived from applying the FHWA building noise reduction factor to the TNM generated exterior noise level.

4.2.2 Future (2044) No-Build Condition TNM-Calculated Sound Levels

Loudest-hour conditions were also calculated for the Future (2044) No-Build condition. This scenario represents the future highway facilities incorporating no changes to the existing roadway geometry. This information is useful for evaluating the scope of the affect that the proposed facility will have on the overall noise environment. As is typical of most highway facilities, future noise levels are anticipated to increase regardless of the proposed design changes due to increased traffic demand. By evaluating differences in sound levels between the No-Build and Build conditions, the relative effect of the project on ambient noise levels can be better understood and considered in project planning.

The validated noise models were used as the baseline for the calculation of Future (2044) No-Build loudest-hour noise levels. Field-observed traffic data were replaced in the models with the peak-hour No-Build (2044) data supplied by PennDOT. The same 176 monitored and modeledonly sites used in the existing loudest-hour models were incorporated as previously described.

TNM-calculated loudest-hour L_{eq} sound levels for the Future (2044) No-Build condition ranged from 37 to 76 dB(A) among all prediction sites. Typically, locations closest to the existing highway facilities had the highest TNM-calculated sound levels. In Table 4, receptor sites with loudest-hour sound levels approaching or exceeding the NAC, as discussed in Section 2.2, are identified in red. L_{eq} sound levels of 66 dB(A) or higher approach or exceed the NAC for activity group B (residential) noise-sensitive outdoor land uses. No substantial increase over the existing noise levels are indicated for the Future No-Build condition. Under the modeled Future No-Build conditions, 27 receptor locations are anticipated to experience noise impacts during the loudest hour of the day. Noise impacts are anticipated to occur in 11 out of the 20 NSAs evaluated.

4.2.3 Future (2044) Build Condition TNM-Calculated Sound Levels

Loudest-hour conditions were also calculated for the Future (2044) Build condition. This scenario represents the proposed roadway facility incorporating the new highway design, as well as design changes to the existing roadway geometries and intervening terrain. This information is used to identify the number and location of NSAs that warrant mitigation consideration. As
referenced in Section 2.2, those areas warranting mitigation consideration are subject to further mitigation analysis in order to determine if sound walls are feasible and reasonable.

The validated noise models were modified to incorporate the proposed design changes and then used as the baseline for the calculation of Future Build (2044) loudest-hour noise levels. Field-observed traffic data were replaced in the models with the peak-hour Build (2044) traffic data supplied by the PennDOT. The same 46 representative monitoring sites and 130 modeled-only sites used in the Existing (2014) and Future (2044) No-Build loudest-hour models were incorporated as previously described.

TNM-calculated loudest-hour L_{eq} sound levels for the Future Build (2044) condition ranged from 36 to 77 dB(A) among all prediction sites. Typically, locations closest to the proposed roadway alignment had the highest TNM-calculated sound levels. In Table 4, receptor sites with loudest-hour sound levels approaching or exceeding the NAC, as discussed in Section 2.2, are identified in red. L_{eq} sound levels of 66 dB(A) or higher approach or exceed the NAC for activity group B (residential) noise-sensitive outdoor land uses. Additionally, impacts identified due to substantial increase over the existing noise levels in this analysis are also identified in red. Under the modeled Future Build conditions, 97 receptor locations are anticipated to experience noise impacts during the loudest hour of the day. Noise impacts are anticipated to occur in 14 out of the 20 NSAs evaluated.

The following sections discuss the results of the Future Build (2044) condition noise levels for each of the 20 NSAs retained for this analysis:

- NSA 2 Noise levels are predicted to be between 69 dB(A) and 73 dB(A) in this NSA. Increases from existing noise levels are predicted to be 1 dB(A) in this NSA. These noise levels represent a traffic noise impact to two noise-sensitive receptors in the NSA. *Mitigation analysis is warranted for this NSA*.
- *NSA 3* Noise levels are predicted to be between 51 dB(A) and 65 dB(A) in this NSA. Increases above existing noise levels are anticipated to range from 2 dB(A) to 14 dB(A)

in this NSA. These noise levels represent a traffic noise impact to 10 noise-sensitive receptors in the NSA as a result of the substantial increase criterion. *Mitigation analysis is warranted for this NSA*.

- NSA 4 Noise levels are predicted to be 56 dB(A) in this NSA. Increases above existing noise levels are anticipated to be 6 dB(A) in this NSA. Future noise levels are not predicted to approach or exceed the NAC, or substantially exceed existing noise levels. *Mitigation analysis is not warranted for this NSA*.
- *NSA 5* Noise levels are predicted to be between 55 dB(A) and 58 dB(A) in this NSA. Increases above existing noise levels range between 12 dB(A) and 16 dB(A) in this NSA. These noise levels represent a traffic noise impact to one noise-sensitive receptor and the River Edge RV Camp and Marina in the NSA as a result of the substantial increase criterion. As a seasonal camp and recreation area, an equivalent residential unit (ERU) calculation was performed for River Edge following guidance from Appendix E of PennDOT's Publication 24, resulting in an ERU value of 23.37. The calculation table and resulting ERU can be found in Appendix D attached to the *Warranted, Feasible, and Reasonable Worksheet. Mitigation analysis is warranted for this NSA*.
- NSA 6 Noise levels are predicted to be between 53 dB(A) and 58 dB(A) in this NSA. Increases above existing noise levels range between 12 dB(A) and 18 dB(A) in this NSA. These noise levels represent a traffic noise impact to six noise-sensitive receptors in the NSA. *Mitigation analysis is warranted for this NSA*.
- NSA 7 Noise levels are predicted to be between 60 dB(A) and 73 dB(A) in this NSA. Increases above existing noise levels range between 1 dB(A) and 15 dB(A) in this NSA. These noise levels represent a traffic noise impact to six noise-sensitive receptors in the NSA. *Mitigation analysis is warranted for this NSA*.
- NSA 8 Noise levels are predicted to be 67 dB(A) in this NSA. Increases above existing noise levels are anticipated to be 3 dB(A) in this NSA. This noise level represents a

traffic noise impact to one noise-sensitive receptor in the NSA. *Mitigation analysis is warranted for this NSA*.

- NSA 9 Noise levels are predicted to be between 58 dB(A) and 67 dB(A) in this NSA. Increases above existing noise levels range between 1 dB(A) and 22 dB(A) in this NSA. These noise levels represent a traffic noise impact to six noise-sensitive receptors in the NSA. *Mitigation analysis is warranted for this NSA*.
- NSA 10 Noise levels are predicted to be 65 dB(A) in this NSA. Increases above existing noise levels are anticipated to be 1 dB(A) in this NSA. Future noise levels are not predicted to approach or exceed the NAC, or substantially exceed existing noise levels. *Mitigation analysis is not warranted for this NSA*.
- *NSA 11* Interior traffic noise levels are predicted to be 36 dB(A) in this NSA. Increases above existing noise levels are anticipated to be 1 dB(A) in this NSA. Future noise levels are not predicted to approach or exceed the NAC, or substantially exceed existing noise levels. *Mitigation analysis is not warranted for this NSA*.
- NSA 12 Noise levels are predicted to be between 67 dB(A) and 70 dB(A) in this NSA. Increases above existing noise levels are anticipated to be 1 dB(A) in this NSA. These noise levels represent a traffic noise impact to four noise-sensitive receptors in the NSA. *Mitigation analysis is warranted for this NSA*.
- NSA 13 Noise levels are predicted to be between 55 dB(A) and 58 dB(A) in this NSA. Increases above existing noise levels range between 4 dB(A) and 6 dB(A) in this NSA. Future noise levels are not predicted to approach or exceed the NAC, or substantially exceed existing noise levels. *Mitigation analysis is not warranted for this NSA*.
- *NSA 14* Noise levels are predicted to be between 54 dB(A) and 60 dB(A) in this NSA. Increases above existing noise levels range between 5 dB(A) and 11 dB(A) in this NSA.

These noise levels represent a traffic noise impact to two noise-sensitive receptors in the NSA. *Mitigation analysis is warranted for this NSA*.

- NSA 17 Noise levels are predicted to be between 55 dB(A) and 69 dB(A) in this NSA. Increases above existing noise levels range between 1 dB(A) and 12 dB(A) in this NSA. These noise levels represent a traffic noise impact to four noise-sensitive receptors in the NSA. *Mitigation analysis is warranted for this NSA*.
- NSA 18 Noise levels are predicted to be between 50 dB(A) and 65 dB(A) in this NSA. Increases above existing noise levels range between 8 dB(A) and 18 dB(A) in this NSA. These noise levels represent a traffic noise impact to one noise-sensitive receptor in the NSA. *Mitigation analysis is warranted for this NSA*.
- NSA 19 Noise levels are predicted to be between 64 dB(A) and 71 dB(A) in this NSA. Increases above existing noise levels range between 5 dB(A) and 13 dB(A) in this NSA. These noise levels represent a traffic noise impact to four noise-sensitive receptors in the NSA. *Mitigation analysis is warranted for this NSA*.
- NSA 20 Noise levels are predicted to be between 61 dB(A) and 77 dB(A) in this NSA. Increases above existing noise levels range between 1 dB(A) and 18 dB(A) in this NSA. These noise levels represent a traffic noise impact to three noise-sensitive receptors in the NSA. *Mitigation analysis is warranted for this NSA*.
- NSA 21 Noise levels are predicted to be between 50 dB(A) and 64 dB(A) in this NSA. Increases above existing noise levels range between 1 dB(A) and 3 dB(A) in this NSA. Future noise levels are not predicted to approach or exceed the NAC, or substantially exceed existing noise levels. *Mitigation analysis is not warranted for this NSA*.
- *NSA* 22 Noise levels are predicted to be between 44 dB(A) and 72 dB(A) in this NSA. Changes compared to existing noise levels are anticipated to range from -2 dB(A) to 4

dB(A) in this NSA. These noise levels represent a traffic noise impact to six noisesensitive receptors in the NSA. *Mitigation analysis is warranted for this NSA*.

 NSA 23 - Noise levels are predicted to be between 53 dB(A) and 58 dB(A) in this NSA. Changes compared to existing noise levels are anticipated to range from 0 dB(A) to 4 dB(A) in this NSA. Future noise levels are not predicted to approach or exceed the NAC, or substantially exceed existing noise levels. *Mitigation analysis is not warranted for this NSA*.

5.0 Highway Traffic Noise Consideration and Mitigation

Alternatives

5.0 HIGHWAY TRAFFIC NOISE CONSIDERATION AND MITIGATION ALTERNATIVES

5.1 Mitigation Alternatives

FHWA has identified certain noise mitigation measures to reduce traffic noise impacts that may be incorporated into either new roadway projects or roadway improvement projects that increase traffic capacity. These include:

- Traffic management measures (e.g., traffic control devices and signing for prohibition of certain vehicle types and time-use restrictions for certain vehicle types);
- Alteration of horizontal and vertical alignments;
- Acquisition of property to serve as a buffer zone to preempt development that would be adversely impacted by traffic noise;
- Sound insulation of public or nonprofit institutional structures; and
- Construction of noise barriers.

Possible traffic management measures include reducing speeds and truck restrictions. Speed restrictions provide only a slight reduction in noise levels without significant reductions in speed. For example, to achieve a 5 dB(A) reduction in noise from heavy trucks, average speeds would need to be reduced from 65 to 45 mph. Therefore, speed restrictions are not a feasible noise mitigation measure for this project. Truck restrictions would not be practical as this would negate the stated purpose for this project. Therefore, truck restrictions also are not a feasible noise mitigation measure for this project.

As a new highway, significant consideration was made during the alternative design and preliminary design stages of the project. Consideration for the effect of the proposed roadway impacts was made prior to choosing the preferred design alternative. Considerations for changes in grading and alignment shifts were also incorporated into the design of this roadway project. Additionally, property acquisitions were made prior to the final design stage to establish the proposed ROW.

Although sound insulation of public or nonprofit institutional structures may be considered, federal and state policies require that primary consideration in determining and abating highway traffic noise impacts must be given to exterior areas. The interior criterion (NAC activity group D, see Section 2.1) is intended to be used "in those situations where there are no outdoor activities to be affected by the traffic noise, or where the exterior activities are far from or physically shielded from the roadway in a manner that prevents an impact on exterior activities." No impacts that would be associated with activity group D land use have been identified through this analysis.

5.2 Noise Barrier Evaluation

Construction of noise barriers is the only remaining highway traffic noise abatement measure to be considered. A noise barrier evaluation was conducted for each NSA meeting the warranted criteria described in Section 2.2.1. The objective of each evaluation was to determine whether a noise barrier could meet the feasibility and reasonableness criteria described in Sections 2.2.2 and 2.2.3. The evaluations were conducted to determine the preferred alignment, approximate noise barrier end points, and the approximate average height of each proposed noise barrier.

The analysis of noise barriers presented represents the final design barrier optimization for this project. Specifically, ranges of barrier panel heights were evaluated in 1-foot increments with the individual noise barrier panel heights adjusted to determine the "point of diminishing return" as directed in PennDOT's Publication No. 24. In general, noise barriers were evaluated first for feasibility, and then if determined to be feasible, the barrier was further analyzed to determine whether a barrier could be designed to meet the reasonableness criteria. The optimized barrier configuration for each impacted NSA is presented below. A complete breakdown of the barrier analysis results can be found in Appendix D attached to the *Warranted, Feasible, and Reasonable Worksheet* for each NSA.

5.2.1 Detailed Noise Barrier Descriptions

This section of the report provides further information on the noise barrier evaluation for each of the impacted NSAs. Three barrier configurations were investigated for each of the NSAs warranting noise abatement consideration: a barrier providing a 5 dB(A) IL to at least 50 percent

of the impacted receptors to establish feasibility; a barrier that breaks the line-of-site between impacted receptors and the proposed roadway; and an optimized barrier that seeks to balance size and performance goals with a focus on finding the point of diminishing return as described in PennDOT's Publication No. 24. Tables 5 through 17 provide barrier-included sound levels and IL (noise reduction) values at all receptors screened for each of the noise barriers investigated.

• NSA 2:

Screening – As cited in the Project Level Highway Traffic Noise Handbook Publication 24 11-15 and the FHWA Title 23: Highways - Part 772-Procedures for Abatement of Highway Traffic Noise and Construction Noise, a screening "rule of thumb" was applied that "The wall dimensions can be estimated based on blocking the line of sight (height) to/from the receptor and extending the barrier 4X the distance measured from the roadway to the receptor."

With this calculation, the closest impacted receptor (2-02) is approximately 450 feet from the roadway. Therefore, a wall 1,800 feet past the front row impacted receptors on both ends assumes a wall about 3,800 feet long (including the distance between the end receptors) and with a typical line of sight height of 12 feet (for tractor trailer exhaust height) results with a barrier approximately 45,600 square feet. Assuming the feasibility criteria could be met and taking 45,600 SF/2 BR possible, we have a SF/BR value of 22,800, which is greater than the 2,000 Max SF/BR limit and therefore not reasonable to construct.

5 dB(A) IL - A noise barrier with an average height of 10.7 feet and total length of approximately 1,400 feet would not provide noise reductions of at least 5 dB(A) for 50 percent of the impacted receptors identified in this NSA. Nor would the barrier satisfy any of the other feasibility criteria. This noise barrier would only provide a 1 dB(A) noise reduction to one impacted receptor. The total square footage of the resulting barrier would be approximately 15,001 square feet.

Line-of-Site - A noise barrier with an average height of 9.9 feet and total length of approximately 800 feet would not provide noise reductions of at least 5 dB(A) for 50 percent of the impacted receptors identified in this NSA. Nor would the barrier satisfy any of the other feasibility criteria. This noise barrier would provide no noise reduction to either impacted receptor. This barrier would break the Line-of-Site between all of the impacted receptors and the proposed roadway. The total square footage of the resulting barrier would be approximately 7,900 square feet.

Optimized - A noise barrier with an average height of 10.7 feet and total length of approximately 1,400 feet would not provide noise reductions of at least 5 dB(A) for 50 percent of the impacted receptors identified in this NSA. Nor would the barrier satisfy any of the other feasibility criteria. This noise barrier would only provide a 1 dB(A) noise reduction to one impacted receptor. This barrier would break the Line-of-Site between all of the impacted receptors and the proposed roadway. The total square footage of the resulting barrier would be approximately 15,001 square feet.

None of the investigated noise barriers satisfy the feasibility criteria. Therefore, based on the results of the analysis completed for this project, a noise barrier is not recommended.

				Euturo Bu	ild (2014)			Abatement C	Consideration		
	Equivalant	Existing	Euturo		niu (2044) arriar)	Cas	e 1	Cas	ie 2	Cas	ie 3
Receiver	Image: state of the state o	nized									
I.D.	Dwelling Units	(2014)	(2044)	Noise Level	Difference Over Existing	Noise Level	Insertion Loss	Noise Level	Insertion Loss	Noise Level	Insertion Loss
M-02	1	<u>68</u>	73	<u>69</u>	1	69	1	<u>69</u>	0	<u>69</u>	1
2-01	1	72	76	73	1	72	0	72	0	72	0
	-	Feedble and Dee				Cas	e 1	Cas	ie 2	Cas	ie 3
						5 dB	B(A) IL Line-of-Site		Optimized		
Barrier Area (ft ²)							15,001		7,900		15,001
Total Numbe	r of Impacted Rec	eptors					2		2		2
Impacted Red	eptors Receiving	≥ 5 dB(A) Inserti	on Loss				0		0		0
Percent of Im	pacted Receptors	s Receiving ≥ 5 d	B(A) Insertion Lo	ss			0%		0%		0%
Is the Barrier	Feasible Based u	pon 5 dB(A) Red	uction Criteria (\	(es/No)?			No		No		No
Total Numbe	r of Benefited Ree	ceptors (All Rece	ptors Receiving	≥ 5 dB[A] Insertio	on Loss)		0		0		0
Barrier Squar	e Footage per Be	nefited Receptor	r (S.F./B.R.)				15,001		7,900		15,001
Is the Barrier	Reasonable from	a S.F./B.R. stan	dpoint (≤ 2,000 t	ft ²) (Yes/No)?			Νο		No		No
Average Nois	e Reduction for B	enefited Recept	ors (dB[A])				0		0		0
ls 7 dB(A) Ins	ertion Loss goal n	net for at least o	ne Impacted Red	eptor (Yes/No)?			No		No		No
Total Barrier	Length (ft)						1,400		800		1,400
Barrier Heigh	t Range (ft)						7 to 12		9 to 10		7 to 12
Average Barr	ier Height (ft)						10.7		9.9		10.7

Table 5. NSA 2 - Barrier Analysis Results.

All noise levels, including calculated comparisons, averages, and insertion losses, are calculated to the tenth of a dB(A) and then rounded to the nearest whole number for presentation purposes.

Indicates Receptors receiving an Insertion Loss of 5 dB(A) or more.

Indicates Impacted Receptors receiving an Insertion Loss of 7 dB(A) or more.

Note:

• NSA 3:

Screening – As cited in the Project Level Highway Traffic Noise Handbook Publication 24 11-15 and the FHWA Title 23: Highways - Part 772-Procedures for Abatement of Highway Traffic Noise and Construction Noise, a screening "rule of thumb" was applied that "The wall dimensions can be estimated based on blocking the line of sight (height) to/from the receptor and extending the barrier 4X the distance measured from the roadway to the receptor."

With this calculation, the closest impacted receptor (3-01) is approximately 700 feet from the roadway. Therefore, a wall 2,800 feet past the front row impacted receptors on both ends assumes a wall about 5,600 feet long (including the distance between the end receptors) and with a typical line of sight height of 12 feet (for tractor trailer exhaust height) results with a barrier approximately 67,200 square feet. Assuming the feasibility criteria could be met and taking 67,200 SF/10 BR possible, we have a SF/BR value of 6,720, which is greater than the 2,000 Max SF/BR limit and therefore not reasonable to construct.

5 dB(A) IL - A dual noise barrier system (two noise barriers working together to provide the requisite abatement) with a combined average height of 20.5 feet and combined total length of approximately 3,400 feet would provide noise reductions of at least 5 dB(A) for 90 percent of the impacted receptors identified in this NSA. This dual barrier system would also satisfy each of the other feasibility criteria. This dual barrier system would provide a 5 dB(A) noise reduction to nine impacted receptors. The total square footage of the resulting barriers would be approximately 69,603 square feet with a Max SF/BR unit value of 7,734 square feet, which is greater than the maximum 2,000 square feet per benefited unit allowed for the reasonableness criteria.

Line-of-Site - Due to intervening terrain and distance from the proposed roadway none of the impacted receptors will have a direct view of the proposed roadway. Therefore, no line-of-site barrier could be developed.

Optimized - A dual noise barrier system with a combined average height of 24.7 feet and combined total length of approximately 3,400 feet would provide noise reductions of at least 5 dB(A) for 90 percent of the impacted receptors identified in this NSA. This dual barrier system would also satisfy each of the other feasibility criteria. This dual barrier system would provide an average 5 dB(A) noise reduction to nine impacted receptors. This barrier system would not break the Line-of-Site between the impacted receptors and the proposed roadway, as explained above. The total square footage of the resulting barriers would be approximately 84,005 square feet with a Max SF/BR unit value of 9,334 square feet, which is greater than the maximum 2,000 square feet per benefited unit allowed for the reasonableness criteria.

This noise barrier satisfies the feasibility criteria but not the reasonableness criteria. Therefore, based on the results of the analysis completed for this project, this noise barrier is not recommended.

				Eutoma Da		Abatement Consideration					
	Fouivalent	Fxisting	Future	Future BL (No B	arrier)	Cas	se 1	Cas	se 2	Cas	ie 3
Receiver	Number of	Worst-Case	No-Build	(5 dB	(A) IL	Line-c	of-Site	Optir	nized
I.D.	Dwelling Units	(2014)	(2044)	Noise Level	Difference Over Existing	Noise Level	Insertion Loss	Noise Level	Insertion Loss	Noise Level	Insertion Loss
M-03	1	60	65	63	2	61	1	63	0	61	1
M-04	1	57	62	63	5	60	3	63	0	60	3
M-05	1	54	58	62	8	58	4	62	0	58	4
M-06	1	46	50	52	6	51	1	52	0	51	1
M-07	1	49	49	53	5	53	0	53	0	53	0
3-01	1	63	68	65	2	64	1	65	0	64	1
3-02	1	55	60	60	5	58	2	60	0	57	2
3-03	1	47	52	56	10	52	5	56	0	51	5
3-04	1	48	53	59	11	55	5	59	0	54	5
3-05	1	44	49	54	10	50	5	54	0	49	5
3-06	1	45	50	57	12	53	5	57	0	52	5
3-07	1	40	45	52	12	47	5	52	0	47	6
3-08	1	41	46	55	13	50	5	55	0	50	5
3-09	1	40	44	52	12	4/	5	52	0	46	6
3-10	1	39	44	51	13	46	5	51	0	46	6
3-11	1	40	44	54	14	49	5	54	0	48	6
3-12	1	48	53	52	4	51	1	52	0	51	1
3-13	1	41	46	51	11	50	1	51	0	50	1
5-14 2.15	1	50	50	55	4	53	0	55	0	55	1
3-15	1	49	50	55	5	52	1	55	0	52	1
3-10	1	49	30	54	5	54	1	54	0	54	1
3-18	1	49	49	53	5	53	0	53	0	53	0
3-19	1	49	50	54	5	53	1	54	0	53	1
3-20	1	49	50	53	5	52	2	53	0	52	2
5 20	-		50		3	Cas		Cas	e 2	Cas	- e 3
		Feasible and Rea	sonable Criteria	:		5 dB	(A) IL	Line-c	of-Site	Optir	nized
Barrier Area (ft²)						69,603		0		84,005
Total Number	of Impacted Rec	eptors					10		10		10
Impacted Rec	eptors Receiving	≥ 5 dB(A) Insert	ion Loss				9		0		9
Percent of Im	pacted Receptors	s Receiving ≥ 5 d	B(A) Insertion Lo	SS			90%		0%		90%
Is the Barrier	Feasible Based u	pon 5 dB(A) Red	uction Criteria (Y	'es/No)?			Yes		No		Yes
Total Number	of Benefited Re	ceptors (All Rece	ptors Receiving	≥ 5 dB[A] Inserti	on Loss)		9		0		9
Barrier Squar	e Footage per Be	nefited Receptor	r (S.F./B.R.)				7,734		0		9,334
Is the Barrier	Is the Barrier Reasonable from a S.F./B.R. standpoint (\leq 2,000 ft ²) (Yes/No)?						No		No		No
Average Nois	Average Noise Reduction for Benefited Receptors (dB[A])						5		0		5
Is 7 dB(A) Inse	s 7 dB(A) Insertion Loss goal met for at least one Impacted Receptor (Yes/No)?						No		No		No
Total Barrier	otal Barrier Length (ft)						3,400		0		3,400
Barrier Height	t Range (ft)						16 to 23		0		21 to 25
Average Barri	er Height (ft)						20.5		0.0		24.7

Table 6. NSA 3 - Barrier Analysis Results.

Note: All hoise leve purposes.

All noise levels, including calculated comparisons, averages, and insertion losses, are calculated to the tenth of a dB(A) and then rounded to the nearest whole number for presentation purposes.

Indicates Receptors receiving an Insertion Loss of 5 dB(A) or more.

Indicates Impacted Receptors receiving an Insertion Loss of 7 dB(A) or more.

• NSA 5:

Screening – As cited in the Project Level Highway Traffic Noise Handbook Publication 24 11-15 and the FHWA Title 23: Highways - Part 772-Procedures for Abatement of Highway Traffic Noise and Construction Noise, a screening "rule of thumb" was applied that "The wall dimensions can be estimated based on blocking the line of sight (height) to/from the receptor and extending the barrier 4X the distance measured from the roadway to the receptor."

With this calculation, the closest impacted receptor (5-01) is approximately 300 feet from the roadway. Therefore, a wall 1,200 feet past the front row impacted receptors on both ends assumes a wall about 4,200 feet long (including the distance between the end receptors) and with a typical line of sight height of 12 feet (for tractor trailer exhaust height) results with a barrier approximately 50,400 square feet. Assuming the feasibility criteria could be met and taking 50,4000 SF/24 BR possible, we have a SF/BR value of 2,100, which is greater than the 2,000 Max SF/BR limit and therefore not reasonable to construct.

5 dB(A) IL - A noise barrier with an average height of 10.0 feet and total length of approximately 3,264 feet would not provide noise reductions of at least 5 dB(A) for 50 percent of the impacted receptors identified in this NSA. Nor would the barrier satisfy any of the other feasibility criteria. This noise barrier would only provide at least a 5 dB(A) noise reduction to one impacted receptor. The total square footage of the resulting barrier would be approximately 35,904 square feet.

Line-of-Site - A noise barrier with an average height of 5.0 feet and total length of approximately 528 feet would not provide noise reductions of at least 5 dB(A) for 50 percent of the impacted receptors identified in this NSA. Nor would the barrier satisfy any of the other feasibility criteria. This noise barrier would only provide a 1 dB(A) noise reduction to one impacted receptor. This barrier would break the Line-of-Site between all of the impacted receptors and the proposed roadway. The total square footage of the resulting barrier would be approximately 1,056 square feet.

Optimized - A noise barrier with an average height of 10.3 feet and total length of approximately 3,216 feet would not provide noise reductions of at least 5 dB(A) for 50 percent of the impacted receptors identified in this NSA. Nor would the barrier satisfy any of the other feasibility criteria. This noise barrier would only provide a 5 dB(A) noise reduction to one impacted receptor. This barrier would break the Line-of-Site between all of the impacted receptors and the proposed roadway. The total square footage of the resulting barrier would be approximately 33,072 square feet.

None of the investigated noise barriers satisfy the feasibility criteria. Therefore, based on the results of the analysis completed for this project, a noise barrier is not recommended.

				Euturo Bu			Abatement Consideration				
	Fauivalent	Existing	Euturo	Future Bu	nia (2044) arrier)	Cas	ie 1	Cas	e 2	Cas	e 3
Receiver	Number of	Worst-Case	No-Build		amer)	5 dB	(A) IL	Line-c	of-Site	Optin	nized
I.D.	Dwelling Units	(2014)	(2044)	Noise Level	Difference Over Existing	Noise Level	Insertion Loss	Noise Level	Insertion Loss	Noise Level	Insertion Loss
M-09	1	43	44	55	12	51	4	55	0	51	3
M-10	0.57	42	44	58	16	54	4	58	-1	54	4
M-11	0.57	43	45	57	15	54	3	58	-1	54	3
5-01	0.57	41	43	55	13	54	1	56	-1	54	1
5-02	0.57	42	44	57	16	51	6	57	0	52	6
5-03	0.57	40	42	56	16	52	3	56	0	53	3
5-04	0.57	40	42	56	16	52	3	56	0	53	3
5-05	0.57	40	42	56	16	53	3	56	0	53	3
5-06	0.57	40	42	56	16	51	4	56	0	52	4
5-07	0.57	40	42	56	16	53	3	56	0	53	3
5-08	0.57	40	42	56	16	53	4	57	0	53	4
5-09	0.57	40	42	56	16	53	3	56	0	53	3
5-10	0.57	40	42	56	16	52	4	56	0	52	4
5-11	0.57	40	42	56	16	53	3	56	0	53	3
5-12	0.57	40	43	57	16	53	4	57	0	53	4
5-13	0.57	40	42	56	16	53	3	56	0	53	3
5-14	0.57	40	43	56	16	53	3	56	0	53	3
5-15	0.57	41	43	56	16	53	3	57	0	53	3
5-16	0.57	41	43	56	15	53	3	57	0	53	3
5-17	0.57	41	43	56	15	54	3	57	-1	54	3
5-18	0.57	41	43	56	16	53	3	57	0	54	3
5-19	0.57	41	43	56	15	53	3	57	-1	53	3
5-20	0.57	41	43	57	16	53	4	57	0	53	4
5-21	0.57	41	43	56	15	54	3	57	-1	54	2
5-22	0.57	41	43	56	15	53	3	57	-1	53	3
5-23	0.57	42	44	56	15	54	2	57	-1	54	2
5-24	0.57	42	44	56	15	54	3	57	-1	54	3
5-25	0.57	42	44	56	15	54	3	57	-1	54	3
5-26	0.57	42	44	56	14	54	2	57	-1	54	2
5-27	0.57	42	44	56	14	54	2	57	-1	54	2
5-28	0.57	42	44	56	15	54	2	57	-1	54	2
5-29	0.57	42	44	57	15	54	3	58	-1	54	3
5-30	0.57	42	44	57	15	55	2	57	-1	55	2
5-31	0.57	42	44	57	15	55	2	58	-1	55	2
5-32	0.57	42	44	57	15	55	2	58	-1	55	2
5-33	0.57	42	44	57	15	55	2	58	-1	55	2
5-34	0.57	42	44	57	15	55	2	58	-1	55	2
5-35	0.57	42	45	57	15	55	2	58	-1	55	2
5-36	0.57	42	44	57	15	55	2	58	-1	55	2
5-37	0.57	43	45	57	14	55	2	58	-1	55	2
5-38	0.57	43	45	57	14	55	2	58	-1	55	2
5-39	0.57	43	45	57	14	55	2	58	-1	55	2
	I	Feasible and Rea	sonable Criteria	:		Cas E dB	Se 1	Cas Lino c	ie Z of Sito	Cas	e 3 aizad
Demise Area (c. ²)					5 0.5		Lille-C	1.050	Optil	22.072
Barrier Area (1	π)						35,904		1,056		33,072
Total Number	of Impacted Rec	eptors					24		24		24
Impacted Rec	eptors Receiving	2 5 dB(A) Inserti	on Loss				1		0		1
Percent of Impacted Receptors Receiving ≥ 5 dB(A) Insertion Loss							4%		0%		4%
Is the Barrier Feasible Based upon 5 dB(A) Reduction Criteria (Yes/No)?							NO		No		NO
Barrier Square Footage per Benefited Recentor (S.F./B.R.)							1		0		1
Darrier Square Footage per Benefited Receptor (S.F./B.K.) Is the Barrier Bostonable from a S.E. (B.B. standaciat ($\leq 2.000 \text{ ft}^2$) (Vec./No.)2							35,904		1,056		33,072
Is the Barrier Reasonable from a S.F./B.R. standpoint (≤ 2,000 ft ²) (Yes/No)?							No		No		No
Average Noise	Average Noise Reduction for Benefited Receptors (dB[A])						6		0		6
Is 7 dB(A) Inse	Is 7 dB(A) Insertion Loss goal met for at least one Impacted Receptor (Yes/No)?						No		No		No
Total Barrier L	ength (ft)						3,264		528		3,216
Barrier Height	кange (ft)						10		5		4 to 10
Average Barri	er Height (ft)						10.0		5.0		10.3

Note: All noise levels, including calculated comparisons, averages, and insertion losses, are calculated to the tenth of a dB(A) and then rounded to the nearest whole number for presentation purposes.

Indicates Receptors receiving an Insertion Loss of 5 dB(A) or more.

Indicates Impacted Receptors receiving an Insertion Loss of 7 dB(A) or more.

S.R. 0015, Section 088 Central Susquehanna Valley Transportation Project Northern Section Final Noise Impact Analysis Report

• NSA 6:

Screening – As cited in the Project Level Highway Traffic Noise Handbook Publication 24 11-15 and the FHWA Title 23: Highways - Part 772-Procedures for Abatement of Highway Traffic Noise and Construction Noise, a screening "rule of thumb" was applied that "The wall dimensions can be estimated based on blocking the line of sight (height) to/from the receptor and extending the barrier 4X the distance measured from the roadway to the receptor."

With this calculation, the closest impacted receptor (6-01) is approximately 100 feet from the roadway. Therefore, a wall 400 feet past the front row impacted receptors on both ends assumes a wall about 1,200 feet long (including the distance between the end receptors) and with a typical line of sight height of 12 feet (for tractor trailer exhaust height) results with a barrier approximately 14,400 square feet. Assuming the feasibility criteria could be met and taking 14,400 SF/6 BR possible, we have a SF/BR value of 2,400, which is greater than the 2,000 Max SF/BR limit and therefore not reasonable to construct.

5 dB(A) IL - A noise barrier with an average height of 11.0 feet and total length of approximately 3,264 feet would provide noise reductions of at least 5 dB(A) for 67 percent of the impacted receptors identified in this NSA. The barrier would also satisfy each of the other feasibility criteria. This noise barrier would provide at least 5 dB(A) of noise reduction to a total of four benefited receptor units. The total square footage of the resulting barrier would be approximately 35,905 square feet with a Max SF/BR unit value of 8,976 square feet, which is greater than the maximum 2,000 square feet per benefited unit allowed for the reasonableness criteria.

Line-of-Site - A noise barrier with an average height of 2.0 feet and total length of approximately 528 feet would not provide noise reductions of at least 5 dB(A) for 50 percent of the impacted receptors identified in this NSA. Nor would the barrier satisfy any of the other feasibility criteria. This noise barrier would only provide a 1 dB(A) noise reduction to one impacted receptor. This barrier would break the Line-of-Site between all

of the impacted receptors and the proposed roadway. The total square footage of the resulting barrier would be approximately 1,056 square feet.

Optimized - A noise barrier with an average height of 9.7 feet and total length of approximately 3,024 feet would provide noise reductions of at least 5 dB(A) for 67 percent of the impacted receptors identified in this NSA. The barrier would also satisfy each of the other feasibility criteria. This noise barrier would provide at least 5 dB(A) of noise reduction to a total of four benefited receptor units. In addition, this barrier would break the Line-of-Site between all of the impacted receptors and the proposed roadway. The total square footage of the resulting barrier would be approximately 29,280 square feet with a Max SF/BR unit value of 7,320 square feet, which is greater than the maximum 2,000 square feet per benefited unit allowed for the reasonableness criteria.

This noise barrier satisfies the feasibility criteria but not the reasonableness criteria. Therefore, based on the results of the analysis completed for this project, this noise barrier is not recommended.

				Future Bu				Abatement C	onsideration		
	Equivalent	Existing	Future	(No B	arrier)	Cas	e 1	Cas	e 2	Case 3 Optimized Noise Level 53 53 53 53 53 53 52 Case 3 Optimized	e 3
Receiver	Number of	Worst-Case	No-Build		,	5 dB((A) IL	Line-c	of-Site	Optin	nized
I.D.	Dwelling Units	(2014)	(2044)	Noise Level	Difference	Noise Level	Insertion	Noise Level	Insertion	Noise Level	Insertion
					Existing		Loss		Loss		Loss
M-12	1	42	44	55	13	52	3	55	0	52	3
6-01	1	41	43	53	12	53	1	54	0	53	1
6-02	1	40	43	58	17	53	5	57	1	53	5
6-03	1	40	42	57	17	52	5	57	0	53	5
6-04	1	40	42	57	18	52	5	57	0	53	5
6-05	1	40	42	57	17	52	5	57	0	52	5
		easible and Rea	sonable Criteria			Cas	e 1	Cas	e 2	Cas	e 3
Feasible and Reasonable Criteria:						5 dB	(A) IL	Line-c	of-Site	Optin	nized
Barrier Area (f	it²)						35,905		1,056		29,280
Total Number	of Impacted Rec	eptors					6		6		6
Impacted Reco	eptors Receiving	≥ 5 dB(A) Inserti	on Loss				4		0		4
Percent of Imp	pacted Receptors	Receiving ≥ 5 d	B(A) Insertion Lo	SS			67%		0%		67%
Is the Barrier I	Feasible Based up	oon 5 dB(A) Redu	uction Criteria (Y	es/No)?			Yes		Νο		Yes
Total Number	of Benefited Rec	eptors (All Rece	ptors Receiving	≥ 5 dB[A] Inserti	on Loss)		4		0		4
Barrier Square	e Footage per Bei	nefited Receptor	(S.F./B.R.)				8,976		1,056		7,320
Is the Barrier I	Reasonable from	a S.F./B.R. stand	dpoint (≤ 2,000 f	t²) (Yes/No)?			No		No		No
Average Noise	e Reduction for B	enefited Recepto	ors (dB[A])				5		0		5
Is 7 dB(A) Inse	rtion Loss goal m	et for at least o	ne Impacted Rec	eptor (Yes/No)?			Νο		Νο		Νο
Total Barrier L	Total Barrier Length (ft)								528		3,024
Barrier Height	Range (ft)						11		2		6 to 10
Average Barrie	er Height (ft)						11.0		2.0		9.7

All noise levels, including calculated comparisons, averages, and insertion losses, are calculated to the tenth of a dB(A) and then rounded to the nearest whole number for presentation

Table 8. NSA 6 - Barrier Analysis Results.

Note:

purposes.

Indicates Receptors receiving an Insertion Loss of 5 dB(A) or more.

Indicates Impacted Receptors receiving an Insertion Loss of 7 dB(A) or more.

• NSA 7:

Screening – As cited in the Project Level Highway Traffic Noise Handbook Publication 24 11-15 and the FHWA Title 23: Highways - Part 772-Procedures for Abatement of Highway Traffic Noise and Construction Noise, a screening "rule of thumb" was applied that "The wall dimensions can be estimated based on blocking the line of sight (height) to/from the receptor and extending the barrier 4X the distance measured from the roadway to the receptor."

With this calculation, the closest impacted receptor (M-13) is approximately 100 feet from the roadway. Therefore, a wall 400 feet past the front row impacted receptors on both ends assumes a wall about 1,300 feet long (including the distance between the end receptors) and with a typical line of sight height of 12 feet (for tractor trailer exhaust height) results with a barrier approximately 15,600 square feet. Assuming the feasibility criteria could be met and taking 15,600 SF/6 BR possible, we have a SF/BR value of 2,600, which is greater than the 2,000 Max SF/BR limit and therefore not reasonable to construct.

5 dB(A) IL - A noise barrier with an average height of 12.9 feet and total length of approximately 912 feet would not provide noise reductions of at least 5 dB(A) for 50 percent of the impacted receptors identified in this NSA. Nor would the barrier satisfy any of the other feasibility criteria. This noise barrier would only provide at least a 5 dB(A) noise reduction to one impacted receptor. The total square footage of the resulting barrier would be approximately 11,761 square feet.

Line-of-Site - A noise barrier with an average height of 12.4 feet and total length of approximately 1,344 feet would not provide noise reductions of at least 5 dB(A) for 50 percent of the impacted receptors identified in this NSA. Nor would the barrier satisfy any of the other feasibility criteria. This noise barrier would only provide at least a 5 dB(A) noise reduction to one impacted receptor. This barrier would break the Line-of-Site between all of the impacted receptors and the proposed roadway. The total square footage of the resulting barrier would be approximately 16,704 square feet.

Optimized - A noise barrier with an average height of 14.3 feet and total length of approximately 1,344 feet would not provide noise reductions of at least 5 dB(A) for 50 percent of the impacted receptors identified in this NSA. Nor would the barrier satisfy any of the other feasibility criteria. This noise barrier would only provide at least a 5 dB(A) noise reduction to one impacted receptor. This barrier would break the Line-of-Site between all of the impacted receptors and the proposed roadway. The total square footage of the resulting barrier would be approximately 19,152 square feet.

None of the investigated noise barriers satisfy the feasibility criteria. Therefore, based on the results of the analysis completed for this project, a noise barrier is not recommended.

	Euture Build (2044) Abatement Consideration										
	Equivalant	Evicting	Futuro		110 (2044) arriar)	Cas	e 1	Cas	e 2	Case 3 Optimiz Noise Level 74 65 64 63 60 Case 3 Optimiz 01 02 03 00 0	e 3
Receiver	Equivalent Number of	Existing Worst-Case	No-Build		anner)	5 dB	(A) IL	Line-c	of-Site	Optin	nized
I.D.	Dwelling Units	(2014)	(2044)	Noise Level	Difference Over Existing	Noise Level	Insertion Loss	Noise Level	Insertion Loss	Noise Level	Insertion Loss
M-13	1	72	74	73	1	74	-1	74	-1	74	-1
M-14	1	62	64	<u>66</u>	4	65	0	65	0	65	0
M-15	1	54	56	69	15	65	5	64	5	64	5
7-01	1	65	67	67	2	<u>68</u>	0	<u>68</u>	0	<u>68</u>	0
7-02	1	66	<u>68</u>	69	2	<i>69</i>	0	69	0	<i>69</i>	0
7-03	1	54	56	64	10	63	1	63	1	63	1
7-04	1	51	54	60	8	60	0	60	0	60	0
Feasible and Reasonable Criteria:						Cas	ie 1	Cas	e 2	Cas	e 3
Feasible and Reasonable Criteria: Barrier Area (ft ²)						5 dB	(A) IL	Line-c	of-Site	Optin	nized
Barrier Area (f	it²)						11,761		16,704		19,152
Total Number	of Impacted Rec	eptors					6		6		6
Impacted Reco	eptors Receiving	≥ 5 dB(A) Inserti	on Loss				1		1		1
Percent of Imp	pacted Receptors	Receiving ≥ 5 d	B(A) Insertion Lo	SS			17%		17%		17%
Is the Barrier I	Feasible Based up	oon 5 dB(A) Redu	uction Criteria (Y	'es/No)?			No		Νο		Νο
Total Number	of Benefited Rec	eptors (All Rece	ptors Receiving	≥ 5 dB[A] Inserti	on Loss)		1		1		1
Barrier Square	e Footage per Bei	nefited Receptor	(S.F./B.R.)				11,761		16,704		19,152
Is the Barrier I	Reasonable from	a S.F./B.R. stand	dpoint (≤ 2,000 t	ft ²) (Yes/No)?			No		Νο		Νο
Average Noise	e Reduction for B	enefited Recept	ors (dB[A])				5		5		5
ls 7 dB(A) Inse	rtion Loss goal m	net for at least o	ne Impacted Rec	eptor (Yes/No)?			No		Νο		Νο
Total Barrier L	ength (ft)						912		1,344		1,344
Barrier Height	Range (ft)						6 to 17		6 to 17		11 to 19
Average Barrie	er Height (ft)						12.9		12.4		14.3

Table 9. NSA 7 - Barrier Analysis Results.

Note: All noise levels, including calculated comparisons, averages, and insertion losses, are calculated to the tenth of a dB(A) and then rounded to the nearest whole number for presentation purposes.

Indicates Receptors receiving an Insertion Loss of 5 dB(A) or more.

Indicates Impacted Receptors receiving an Insertion Loss of 7 dB(A) or more.

• NSA 8:

Screening – As cited in the Project Level Highway Traffic Noise Handbook Publication 24 11-15 and the FHWA Title 23: Highways - Part 772-Procedures for Abatement of Highway Traffic Noise and Construction Noise, a screening "rule of thumb" was applied that "The wall dimensions can be estimated based on blocking the line of sight (height) to/from the receptor and extending the barrier 4X the distance measured from the roadway to the receptor."

With this calculation, the closest impacted receptor (M-16) is approximately 350 feet from the roadway. Therefore, a wall 1,400 feet past the front row impacted receptors on both ends assumes a wall about 2,800 feet long (including the distance between the end receptors) and with a typical line of sight height of 12 feet (for tractor trailer exhaust height) results with a barrier approximately 33,600 square feet. Assuming the feasibility criteria could be met and taking 33,600 SF/1 BR possible, we have a SF/BR value of 33,600, which is greater than the 2,000 Max SF/BR limit and therefore not reasonable to construct.

5 dB(A) IL - A noise barrier with an average height of 13.2 feet and total length of approximately 1,081 feet would not provide noise reductions of at least 5 dB(A) for 50 percent of the impacted receptors identified in this NSA. Nor would the barrier satisfy any of the other feasibility criteria. This noise barrier would only provide a 1 dB(A) noise reduction to one impacted receptor. The total square footage of the resulting barrier would be approximately 14,316 square feet.

Line-of-Site - A noise barrier with an average height of 8.9 feet and total length of approximately 745 feet would not provide noise reductions of at least 5 dB(A) for 50 percent of the impacted receptors identified in this NSA. Nor would the barrier satisfy any of the other feasibility criteria. This noise barrier would only provide a 1 dB(A) noise reduction to one impacted receptor. This barrier would break the Line-of-Site between all of the impacted receptors and the proposed roadway. The total square footage of the resulting barrier would be approximately 6,633 square feet.

Optimized - A noise barrier with an average height of 13.2 feet and total length of approximately 1,081 feet would not provide noise reductions of at least 5 dB(A) for 50 percent of the impacted receptors identified in this NSA. Nor would the barrier satisfy any of the other feasibility criteria. This noise barrier would provide a 1 dB(A) noise reduction to one impacted receptor unit. This barrier would break the Line-of-Site between all of the impacted receptors and the proposed roadway. The total square footage of the resulting barrier would be approximately 14,316 square feet.

None of the investigated noise barriers satisfy the feasibility criteria. Therefore, based on the results of the analysis completed for this project, a noise barrier is not recommended.

		<i>.</i>		Eutomo Du	·:/-/ (2044)			Abatement C	onsideration			
Receiver	Equivalent	Existing	Future	(No Ba	arrier)	Cas 5 dB(se 1 (A) IL	Cas Line-c	se 2 of-Site Insertion Loss 1 se 2 of-Site 6,633 1 0 0 0%	Cas Optir	e 3 nized	
I.D.	Dwelling Units	(2014)	(2044)	Noise Level	Difference Over Existing	Noise Level	Insertion Loss	Sertion LossNoise LevelInsertion LossNoise LevelInsertion Loss1661661Case 2Case 3Line-of-SiteOptimized4,3166,63314,31610000%0%0%No000004,31614,31614,316				
M-16	1	64	66	67	3	66	1	66	1	66	1	
		Feasible and Rea	sonable Criteria			Cas	se 1	Cas	e 2	Case 3		
			sonable enterna	•		5 dB	(A) IL	Line-c	of-Site	Optir	nized	
Barrier Area (ft²)						14,316		6,633		14,316	
Total Number	of Impacted Rec	eptors					1		1		1	
Impacted Rec	eptors Receiving	≥ 5 dB(A) Inserti	on Loss				0		0		0	
Percent of Im	pacted Receptors	Receiving ≥ 5 d	B(A) Insertion Lo	oss			0%		0%		0%	
Is the Barrier	Feasible Based u	pon 5 dB(A) Redu	uction Criteria (\	(es/No)?			No		Νο		Νο	
Total Number	of Benefited Red	eptors (All Rece	ptors Receiving	≥ 5 dB[A] Inserti	on Loss)		0		0		0	
Barrier Square	e Footage per Be	nefited Receptor	·(S.F./B.R.)				14,316		6,633		14,316	
Is the Barrier	Reasonable from	a S.F./B.R. stand	dpoint (≤ 2,000	ft ²) (Yes/No)?			Νο		Νο		Νο	
Average Noise	e Reduction for B	enefited Recept	ors (dB[A])				0		0		0	
ls 7 dB(A) Inse	ertion Loss goal m	net for at least o	ne Impacted Red	eptor (Yes/No)?			No		No		No	
Total Barrier I	.ength (ft)						1,081		745		1,081	
Barrier Height	t Range (ft)						8 to 14		6 to 9		8 to 14	
Average Barri	er Height (ft)						13.2		8.9		13.2	

Table 10. NSA 8 - Barrier Analysis Results.

All noise levels, including calculated comparisons, averages, and insertion losses, are calculated to the tenth of a dB(A) and then rounded to the nearest whole number for presentation purposes.

Indicates Receptors receiving an Insertion Loss of 5 dB(A) or more.

Indicates Impacted Receptors receiving an Insertion Loss of 7 dB(A) or more.

Note:

• NSA 9:

Screening – As cited in the Project Level Highway Traffic Noise Handbook Publication 24 11-15 and the FHWA Title 23: Highways - Part 772-Procedures for Abatement of Highway Traffic Noise and Construction Noise, a screening "rule of thumb" was applied that "The wall dimensions can be estimated based on blocking the line of sight (height) to/from the receptor and extending the barrier 4X the distance measured from the roadway to the receptor."

With this calculation, the closest impacted receptor (M-17) is approximately 225 feet from the roadway. Therefore, a wall 900 feet past the front row impacted receptors on both ends assumes a wall about 2,600 feet long (including the distance between the end receptors) and with a typical line of sight height of 12 feet (for tractor trailer exhaust height) results with a barrier approximately 31,200 square feet. Assuming the feasibility criteria could be met and taking 31,200 SF/6 BR possible, we have a SF/BR value of 5,200, which is greater than the 2,000 Max SF/BR limit and therefore not reasonable to construct.

5 dB(A) IL - A dual noise barrier system with a combined average height of 14.1 feet and combined total length of approximately 2,688 feet would provide noise reductions of at least 5 dB(A) for 67 percent of the impacted receptors identified in this NSA. The barrier system would also satisfy each of the other feasibility criteria. This dual noise barrier system would provide at least a 5 dB(A) noise reduction to four impacted receptors. The total square footage of the resulting barriers would be approximately 37,632 square feet with a Max SF/BR unit value of 9,408 square feet, which is greater than the maximum 2,000 square feet per benefited unit allowed for the reasonableness criteria.

Line-of-Site - A dual noise barrier system with a combined average height of 13.1 feet and combined total length of approximately 1,680 feet would not provide noise reductions of at least 5 dB(A) for 50 percent of the impacted receptors identified in this NSA. Nor would the barrier system satisfy any of the other feasibility criteria. This noise barrier system would only provide a 5 dB(A) noise reduction to one impacted receptor. This dual barrier system would break the Line-of-Site between all of the impacted receptors and the proposed roadway. The total square footage of the resulting barrier system would be approximately 22,128 square feet.

Optimized - A dual noise barrier system with a combined average height of 16.4 feet and combined total length of approximately 2,688 feet would provide noise reductions of at least 5 dB(A) for 67 percent of the impacted receptors identified in this NSA. The barrier system would also satisfy each of the other feasibility criteria. This noise barrier would provide at least a 5 dB(A) noise reduction to four impacted receptor units. This dual barrier system would break the Line-of-Site between all of the impacted receptors and the proposed roadway. The total square footage of the resulting barriers would be approximately 44,256 square feet with a Max SF/BR unit value of 11,064 square feet, which is greater than the maximum 2,000 square feet per benefited unit allowed for the reasonableness criteria.

This noise barrier satisfies the feasibility criteria but not the reasonableness criteria. Therefore, based on the results of the analysis completed for this project, this noise barrier is not recommended.

				Future Bu	:id (2044)		Abatement Consideration					
	Fauivalent	Fristing	Future	Future Bu (No B:	arrier)	Cas	ie 1	Cas	e 2	Cas	e 3	
Receiver	Number of	Worst-Case	No-Build		annery	5 dB	(A) IL	Line-o	of-Site	Optimized		
I.D.	Dwelling Units	(2014)	(2044)	Noise Level	Difference Over Existing	Noise Level	Insertion Loss	Noise Level	Insertion Loss	Noise Level	Insertion Loss	
M-17	1	45	47	67	22	60	7	62	5	59	8	
M-18	1	49	51	63	14	57	6	60	2	57	6	
9-01	1	44	46	63	19	58	5	61	2	58	5	
9-02	1	47	49	60	14	56	5	58	2	56	5	
9-03	1	51	53	61	10	58	3	59	2	58	3	
9-04	1	52	54	60	8	58	2	58	1	58	2	
9-05	1	53	56	58	5	57	2	57	1	56	2	
9-06	1	52	54	60	8	58	1	59	1	58	2	
9-07	1	55	58	59	4	59	1	59	0	58	1	
9-08	1	58	60	60	2	60	0	60	0	60	1	
9-09	1	62	64	63	1	63	0	63	0	63	0	
9-10	1	63	65	65	2	65	0	65	0	65	0	
9-11	1	63	65	64	1	64	0	64	0	64	0	
9-12	1	<u>66</u>	<u>68</u>	67	1	67	0	67	0	67	0	
		Feasible and Rea	sonable Criteria	:		Case 1		Case 2		Case 3		
	-			-		5 dB(A) IL		Line-of-Site		Optimized		
Barrier Area (ft ²)						37,632		22,128		44,256	
Total Number	of Impacted Rec	eptors					6		6		6	
Impacted Rec	eptors Receiving	≥ 5 dB(A) Inserti	on Loss				4		1		4	
Percent of Im	pacted Receptors	Receiving ≥ 5 d	B(A) Insertion Lo	SS			67%		17%		67%	
Is the Barrier	Feasible Based u	oon 5 dB(A) Red	uction Criteria (Y	es/No)?			Yes		Νο		Yes	
Total Number	of Benefited Rec	eptors (All Rece	ptors Receiving	≥ 5 dB[A] Inserti	on Loss)		4		1		4	
Barrier Square	e Footage per Bei	nefited Receptor	(S.F./B.R.)				9,408		22,128		11,064	
Is the Barrier	Reasonable from	a S.F./B.R. stand	dpoint (≤ 2,000 f	ft ²) (Yes/No)?			No		Νο		No	
Average Noise	e Reduction for B	enefited Recept	ors (dB[A])				5		5		6	
Is 7 dB(A) Inse	ertion Loss goal m	net for at least o	ne Impacted Rec	eptor (Yes/No)?			Yes		Νο		Yes	
Total Barrier L	.ength (ft)						2,688		1,680		2,688	
Barrier Height	: Range (ft)						10 to 16		11 to 20		10 to 20	
Average Barri	er Height (ft)						14.1		13.1		16.4	

Table 11. NSA 9 - Barrier Analysis Results.

All noise levels, including calculated comparisons, averages, and insertion losses, are calculated to the tenth of a dB(A) and then rounded to the nearest whole number for presentation purposes.

Note:

Indicates Receptors receiving an Insertion Loss of 5 dB(A) or more.

Indicates Impacted Receptors receiving an Insertion Loss of 7 dB(A) or more.

S.R. 0015, Section 088 Central Susquehanna Valley Transportation Project Northern Section Final Noise Impact Analysis Report • *NSA 12:* This NSA is situated adjacent to the existing S.R. 0147 just north of the proposed relocation of Ridge Road. Impacts associated with this NSA are attributed to traffic on S.R. 0147. Through a process of model isolation (all traffic was removed from all modeled roadways except S.R. 0147), it was confirmed that no other roadways are contributing to the impacted receptors. All four of the affected residential properties require direct driveway access to S.R. 0147. Therefore, no feasible abatement could be developed that would not restrict access between the impacted properties and S.R. 0147.

No noise barriers could be developed that satisfy the feasibility criteria. Therefore, based on the results of the analysis completed for this project, a noise barrier is not recommended.

• NSA 14:

Screening – As cited in the Project Level Highway Traffic Noise Handbook Publication 24 11-15 and the FHWA Title 23: Highways - Part 772-Procedures for Abatement of Highway Traffic Noise and Construction Noise, a screening "rule of thumb" was applied that "The wall dimensions can be estimated based on blocking the line of sight (height) to/from the receptor and extending the barrier 4X the distance measured from the roadway to the receptor."

With this calculation, the closest impacted receptor (M-24) is approximately 400 feet from the roadway. Therefore, a wall 1,600 feet past the front row impacted receptors on both ends assumes a wall about 3,600 feet long (including the distance between the end receptors) and with a typical line of sight height of 12 feet (for tractor trailer exhaust height) results with a barrier approximately 43,200 square feet. Assuming the feasibility criteria could be met and taking 43,200 SF/7 BR possible, we have a SF/BR value of 6,171, which is greater than the 2,000 Max SF/BR limit and therefore not reasonable to construct.

5 dB(A) IL - A noise barrier with an average height of 18.7 feet and total length of approximately 1,776 feet would not provide noise reductions of at least 5 dB(A) for 50

percent of the impacted receptors identified in this NSA. Nor would the barrier satisfy any of the other feasibility criteria. This noise barrier would only provide an average 3 dB(A) noise reduction to the impacted receptors. The total square footage of the resulting barrier would be approximately 33,119 square feet.

Line-of-Site – Due to intervening terrain and distance from the proposed roadway none of the impacted receptors will have a direct view of the proposed roadway. Therefore, no line-of-site barrier could be developed.

Optimized - A noise barrier with an average height of 17.8 feet and total length of approximately 1,776 feet would not provide noise reductions of at least 5 dB(A) for 50 percent of the impacted receptors identified in this NSA. Nor would the barrier satisfy any of the other feasibility criteria. This noise barrier would only provide an average 3 dB(A) noise reduction to the impacted receptors. The total square footage of the resulting barrier would be approximately 31,679 square feet.

None of the investigated noise barriers satisfy the feasibility criteria. Therefore, based on the results of the analysis completed for this project, a noise barrier is not recommended.

• NSA 17:

Screening – As cited in the Project Level Highway Traffic Noise Handbook Publication 24 11-15 and the FHWA Title 23: Highways - Part 772-Procedures for Abatement of Highway Traffic Noise and Construction Noise, a screening "rule of thumb" was applied that "The wall dimensions can be estimated based on blocking the line of sight (height) to/from the receptor and extending the barrier 4X the distance measured from the roadway to the receptor."

With this calculation, the closest impacted receptor (17-03) is approximately 650 feet from the roadway. Therefore, a wall 2,600 feet past the front row impacted receptors on both ends assumes a wall about 5,600 feet long (including the distance between the end receptors) and with a typical line of sight height of 12 feet (for tractor trailer exhaust

height) results with a barrier approximately 67,200 square feet. Assuming the feasibility criteria could be met and taking 67,200 SF/4 BR possible, we have a SF/BR value of 16,800, which is greater than the 2,000 Max SF/BR limit and therefore not reasonable to construct.

5 dB(A) IL - A noise barrier with an average height of 20.0 feet and total length of approximately 2,880 feet would not provide noise reductions of at least 5 dB(A) for 50 percent of the impacted receptors identified in this NSA. Nor would the barrier satisfy any of the other feasibility criteria. This noise barrier would only provide a 5 dB(A) noise reduction to one impacted receptor. The total square footage of the resulting barrier would be approximately 57,602 square feet.

Line-of-Site – A noise barrier with an average height of 11.0 feet and total length of approximately 96 feet would not provide noise reductions of at least 5 dB(A) for 50 percent of the impacted receptors identified in this NSA. Nor would the barrier satisfy any of the other feasibility criteria. This noise barrier would only provide a 3 dB(A) noise reduction to one impacted receptor. This barrier would break the Line-of-Site between all of the impacted receptors and the proposed roadway. The total square footage of the resulting barrier would be approximately 1,055 square feet.

Optimized - A noise barrier with an average height of 12.0 feet and total length of approximately 2,736 feet would not provide noise reductions of at least 5 dB(A) for 50 percent of the impacted receptors identified in this NSA. Nor would the barrier satisfy any of the other feasibility criteria. This noise barrier would only provide a 4 dB(A) noise reduction to one impacted receptor. The total square footage of the resulting barrier would be approximately 32,833 square feet.

This noise barrier does not satisfy the feasibility criteria and does not satisfy the reasonableness criteria. Therefore, based on the results of the analysis completed for this project, this noise barrier is not recommended.

				Euturo Bu	uld (2044)			Abatement C	Consideration		
	Equivalent	Existing	Future	(No B	arrier)	Cas	se 1	Cas	se 2	Cas	e 3
Receiver	Number of	Worst-Case	No-Build	(5 dB	(A) IL	Line-c	of-Site	Optin	nized
I.D.	Dwelling Units	(2014)	(2044)	Noise Level	Difference Over Existing	Noise Level	Insertion Loss	Noise Level	Insertion Loss	Noise Level	Insertion Loss
M-25	1	55	55	60	5	59	1	60	0	59	1
M-26	1	47	47	54	7	51	3	54	0	51	3
14-01	1	53	53	60	7	59	1	60	0	59	1
14-02	1	53	53	58	5	57	1	58	0	57	1
14-03	1	43	44	54	11	51	3	54	0	51	3
14-04	1	46	46	57	11	53	3	57	0	53	3
	-	Eassible and Boa	sonable Criteria			Cas	se 1	Cas	ie 2	Cas	e 3
reasible and Reasonable Criteria.						5 dB	(A) IL	Line-c	of-Site	Optin	nized
Barrier Area (ft²)						33,119		0		31,679
Total Number	of Impacted Rec	eptors					2		2		2
Impacted Reco	eptors Receiving	≥ 5 dB(A) Inserti	on Loss				0		0		0
Percent of Im	pacted Receptors	Receiving ≥ 5 d	B(A) Insertion Lo	SS			0%		0%		0%
Is the Barrier	Feasible Based u	oon 5 dB(A) Red	uction Criteria (Y	'es/No)?			No		Νο		Νο
Total Number	of Benefited Red	eptors (All Rece	ptors Receiving	≥ 5 dB[A] Insertio	on Loss)		0		0		0
Barrier Square	e Footage per Be	nefited Receptor	· (S.F./B.R.)				33,119		0		31,679
Is the Barrier	Reasonable from	a S.F./B.R. stand	dpoint (≤ 2,000 f	ft ²) (Yes/No)?			No		Νο		Νο
Average Noise	e Reduction for B	enefited Recept	ors (dB[A])				0		0		0
Is 7 dB(A) Inse	ertion Loss goal m	net for at least o	ne Impacted Rec	eptor (Yes/No)?			No		No		No
Total Barrier L	.ength (ft)						1,776		0		1,776
Barrier Height	Range (ft)						14 to 21		0		14 to 21
Average Barri	er Height (ft)						18.7		0.0		17.8

Table 12. NSA 14 - Barrier Analysis Results.

All noise levels, including calculated comparisons, averages, and insertion losses, are calculated to the tenth of a dB(A) and then rounded to the nearest whole number for presentation purposes.

Note:

Indicates Receptors receiving an Insertion Loss of 5 dB(A) or more.

Indicates Impacted Receptors receiving an Insertion Loss of 7 dB(A) or more.

				Future Bu	:ld (2044)	Abatement Consideration						
	Fauivalent	Fxisting	Future	(No B	arrier)	Cas	e 1	Cas	e 2	Cas	e 3	
Receiver	Number of	Worst-Case	No-Build			5 dB	(A) IL	Line-c	of-Site	Case Optimi Noise Level	nized	
I.D.	Dwelling Units	(2014)	(2044)	Noise Level	Difference Over Existing	Noise Level	Insertion Loss	Noise Level	Insertion Loss	Noise Level	Insertion Loss	
M-29	1	43	45	55	12	51	5	52	3	51	4	
M-30	1	64	66	65	1	65	0	65	0	65	0	
M-31	1	58	60	62	4	60	2	62	0	61	1	
17-01	1	<u>68</u>	70	69	1	<i>69</i>	0	69	0	69	0	
17-02	1	66	<u>68</u>	67	1	67	0	67	0	67	0	
17-03	1	65	67	66	1	66	0	66	0	<u>66</u>	0	
17-04	1	63	65	65	2	64	1	65	0	64	1	
17-05	1	58	60	62	4	60	2	62	0	60	1	
		Cas	e 1	Cas	e 2	Cas	e 3					
Feasible and Reasonable Criteria:						5 dB	(A) IL	Line-o	of-Site	Optin	nized	
Barrier Area (1	ft²)						57,602		1,055		32,833	
Total Number	of Impacted Rec	eptors					4		4		4	
Impacted Reco	eptors Receiving	≥ 5 dB(A) Inserti	on Loss				1		0		0	
Percent of Im	pacted Receptors	Receiving ≥ 5 d	B(A) Insertion Lo	SS			25%		0%		0%	
Is the Barrier	Feasible Based up	oon 5 dB(A) Redu	uction Criteria (Y	'es/No)?			No		Νο		No	
Total Number	of Benefited Rec	eptors (All Rece	ptors Receiving	≥ 5 dB[A] Inserti	on Loss)		1		0		0	
Barrier Square	e Footage per Bei	nefited Receptor	· (S.F./B.R.)				57,602		1,055		32,833	
Is the Barrier I	Reasonable from	a S.F./B.R. stand	dpoint (≤ 2,000 f	ft ²) (Yes/No)?			Νο		Νο		No	
Average Noise	e Reduction for B	enefited Recept	ors (dB[A])				5		0		0	
Is 7 dB(A) Inse	ertion Loss goal m	et for at least o	ne Impacted Rec	eptor (Yes/No)?			Νο		Νο		Νο	
Total Barrier L	Total Barrier Length (ft)								96		2,736	
Barrier Height	Barrier Height Range (ft)						20		11		9 to 14	
Average Barrie	er Height (ft)						20.0		11.0		12.0	

Table 13. NSA 17 - Barrier Analysis Results.

All noise levels, including calculated comparisons, averages, and insertion losses, are calculated to the tenth of a dB(A) and then rounded to the nearest whole number for presentation purposes.

Note:

Indicates Receptors receiving an Insertion Loss of 5 dB(A) or more.

Indicates Impacted Receptors receiving an Insertion Loss of 7 dB(A) or more.

• NSA 18:

Screening – As cited in the Project Level Highway Traffic Noise Handbook Publication 24 11-15 and the FHWA Title 23: Highways - Part 772-Procedures for Abatement of Highway Traffic Noise and Construction Noise, a screening "rule of thumb" was applied that "The wall dimensions can be estimated based on blocking the line of sight (height) to/from the receptor and extending the barrier 4X the distance measured from the roadway to the receptor."

With this calculation, the closest impacted receptor (M-32) is approximately 400 feet from the roadway. Therefore, a wall 1,600 feet past the front row impacted receptors on both ends assumes a wall about 3,200 feet long (including the distance between the end receptors) and with a typical line of sight height of 12 feet (for tractor trailer exhaust height) results with a barrier approximately 38,400 square feet. Assuming the feasibility criteria could be met and taking 38,400 SF/1 BR possible, we have a SF/BR value of 38,400, which is greater than the 2,000 Max SF/BR limit and therefore not reasonable to construct.

5 dB(A) IL - A noise barrier with an average height of 14.6 feet and total length of approximately 960 feet would provide noise reductions of at least 5 dB(A) for 100 percent of the impacted receptors identified in this NSA. The barrier would also satisfy each of the other feasibility criteria. This noise barrier would only provide at least a 5 dB(A) noise reduction to one impacted receptor. The total square footage of the resulting barrier would be approximately 13,968 square feet.

Line-of-Site - A noise barrier with an average height of 15.8 feet and total length of approximately 432 feet would not provide noise reductions of at least 5 dB(A) for 50 percent of the impacted receptors identified in this NSA. Nor would the barrier satisfy any of the other feasibility criteria. This noise barrier would only provide a 3 dB(A) noise reduction to the impacted receptor. This barrier would break the Line-of-Site between all of the impacted receptors and the proposed roadway. The total square footage of the resulting barrier would be approximately 6,816 square feet.

Optimized - A noise barrier with an average height of 19.2 feet and total length of approximately 1,008 feet would provide noise reductions of at least 5 dB(A) for 100 percent of the impacted receptors identified in this NSA. The barrier would also satisfy each of the other feasibility criteria. This noise barrier would provide at least a 5 dB(A) noise reduction to one non-impacted receptor, and a 7 dB(A) reduction to one impacted receptors and the proposed roadway. The total square footage of the resulting barrier would be approximately 19,392 square feet with a Max SF/BR unit value of 9,696 square feet, which is greater than the maximum 2,000 square feet per benefited unit allowed for the reasonableness criteria.

This noise barrier satisfies the feasibility criteria but not the reasonableness criteria. Therefore, based on the results of the analysis completed for this project, this noise barrier is not recommended.
				Future Build (2044)					Abatement Consideration					
- ·	Equivalent	Existing	Future	Future Bu (No B;	(No Barrier)		Case 1		Case 2		Case 3			
Receiver	Number of	Worst-Case	No-Build	L		5 dB	A) IL	Line-o	f-Site	Optin	nized			
I.D.	Dwelling Units	(2014)	(2044)	Noise Level	Difference Over Existing	Noise Level	Insertion Loss	Noise Level	Insertion Loss	Noise Level	Insertion Loss			
M-32	1	47	49	65	18	60	5	62	3	58	7			
M-33	1	42	44	50	8	46	4	50	1	45	5			
		Eassible and Pag	conchia Critoria			Cas	e 1	Case 2		Case 3				
Feasible and Reasonable Criteria:				5 dB	A) IL Line-of-Site		Optimized							
Barrier Area (ft ²)					13,968		6,816		19,392					
Total Number	of Impacted Rec	eptors					1		1		1			
Impacted Rec	eptors Receiving	≥ 5 dB(A) Inserti	ion Loss				1		0		1			
Percent of Im	pacted Receptors	Receiving ≥ 5 d	B(A) Insertion Lo	iss			100%		0%		100%			
Is the Barrier	Feasible Based up	pon 5 dB(A) Red	uction Criteria (Y	'es/No)?			Yes		No		Yes			
Total Number	of Benefited Rec	eptors (All Rece	ptors Receiving	≥ 5 dB[A] Inserti	on Loss)		1		0		2			
Barrier Square	e Footage per Ber	nefited Receptor	r (S.F./B.R.)				13,968		6,816		9,696			
Is the Barrier	Reasonable from	a S.F./B.R. stand	dpoint (≤ 2,000 f	ft ²) (Yes/No)?			No		No		No			
Average Noise	e Reduction for B	enefited Recept	ors (dB[A])				5		0		6			
ls 7 dB(A) Inse	ertion Loss goal m	net for at least o	ne Impacted Rec	eptor (Yes/No)?			No		No		Yes			
Total Barrier I	Length (ft)						960		432		1,008			
Barrier Height	t Range (ft)						12 to 15		15 to 16		15 to 20			
Average Barri	er Height (ft)						14.6		15.8		19.2			

Table 14. NSA 18 - Barrier Analysis Results.

Note: All noise levels, including calculated comparisons, averages, and insertion losses, are calculated to the tenth of a dB(A) and then rounded to the nearest whole number for presentation purposes.

Indicates Receptors receiving an Insertion Loss of 5 dB(A) or more.

Indicates Impacted Receptors receiving an Insertion Loss of 7 dB(A) or more.

• NSA 19:

Screening – As cited in the Project Level Highway Traffic Noise Handbook Publication 24 11-15 and the FHWA Title 23: Highways - Part 772-Procedures for Abatement of Highway Traffic Noise and Construction Noise, a screening "rule of thumb" was applied that "The wall dimensions can be estimated based on blocking the line of sight (height) to/from the receptor and extending the barrier 4X the distance measured from the roadway to the receptor."

With this calculation, the closest impacted receptor (19-01) is approximately 150 feet from the roadway. Therefore, a wall 600 feet past the front row impacted receptors on both ends assumes a wall about 1,600 feet long (including the distance between the end receptors) and with a typical line of sight height of 12 feet (for tractor trailer exhaust height) results with a barrier approximately 19,200 square feet. Assuming the feasibility criteria could be met and taking 19,200 SF/4 BR possible, we have a SF/BR value of 4,800, which is greater than the 2,000 Max SF/BR limit and therefore not reasonable to construct.

5 dB(A) IL - A noise barrier with an average height of 16.9 feet and total length of approximately 1,056 feet would provide noise reductions of at least 5 dB(A) for 50 percent of the impacted receptors identified in this NSA. The barrier would also satisfy each of the other feasibility criteria. This noise barrier would provide at least a 5 dB(A) noise reduction to two impacted receptors. The total square footage of the resulting barrier would be approximately 17,855 square feet.

Line-of-Site - A noise barrier with an average height of 21.6 feet and total length of approximately 2,112 feet would provide noise reductions of at least 5 dB(A) for 75 percent of the impacted receptors identified in this NSA. The barrier would also satisfy each of the other feasibility criteria. This noise barrier would provide at least a 7 dB(A) noise reduction to three impacted receptors. This barrier would break the Line-of-Site between 75 percent of the impacted receptors and the proposed roadway. The total square footage of the resulting barrier would be approximately 45,599 square feet.

Optimized - A noise barrier with an average height of 21.6 feet and total length of approximately 1,920 feet would provide noise reductions of at least 5 dB(A) for 75 percent of the impacted receptors identified in this NSA. The barrier would also satisfy each of the other feasibility criteria. This noise barrier would provide at least a 5 dB(A) noise reduction to one non-impacted receptor, and at least a 7dB(A) reduction to three impacted receptors. This barrier would break the Line-of-Site between 75 percent of the impacted receptors and the proposed roadway. The total square footage of the resulting barrier would be approximately 41,519 square feet with a Max SF/BR unit value of 10,380 square feet, which is greater than the maximum 2,000 square feet per benefited unit allowed for the reasonableness criteria.

This noise barrier satisfies the feasibility criteria but not the reasonableness criteria. Therefore, based on the results of the analysis completed for this project, this noise barrier is not recommended.

				Euturo Bu	uld (2014)			Abatement C	onsideration		
	Equivalent	Existing	Future		arrier)	Cas	se 1	Case 2		Cas	e 3
Receiver	Number of	Worst-Case	No-Build	(5 dB	(A) IL	Line-c	of-Site	Optin	nized
I.D.	Dwelling Units	(2014)	(2044)	Noise Level	Difference Over Existing	Noise Level	Insertion Loss	Noise Level	Insertion Loss	Noise Level	Insertion Loss
M-34	1	54	56	67	13	67	0	67	0	67	0
M-35	1	59	62	64	5	62	2	61	3	59	5
M-36	1	64	67	69	5	63	6	62	7	59	10
19-01	1	60	63	71	11	69	2	64	7	64	7
19-02	1	61	65	<u>68</u>	7	63	5	61	8	59	10
Eastible and Ressonable Criteria:				Case 1 Case 2		Cas	e 3				
			sonable enterna	•		5 dB	5 dB(A) IL Line-of-		of-Site	Optin	nized
Barrier Area (ft²)						17,855		45,599		41,519
Total Number	of Impacted Rec	eptors					4		4		4
Impacted Rec	eptors Receiving	≥ 5 dB(A) Inserti	on Loss				2		3		3
Percent of Im	pacted Receptors	Receiving ≥ 5 d	B(A) Insertion Lo	SS			50%		75%		75%
Is the Barrier	Feasible Based u	oon 5 dB(A) Red	uction Criteria (Y	′es/No)?			Yes		Yes		Yes
Total Number	of Benefited Rec	eptors (All Rece	ptors Receiving	≥ 5 dB[A] Inserti	on Loss)		2		3		4
Barrier Square	e Footage per Bei	nefited Receptor	· (S.F./B.R.)				8,928		15,200		10,380
Is the Barrier	Reasonable from	a S.F./B.R. stand	dpoint (≤ 2,000 ⁻	ft ²) (Yes/No)?			No		Νο		Νο
Average Noise	e Reduction for B	enefited Recept	ors (dB[A])				5		7		8
Is 7 dB(A) Inse	ertion Loss goal m	net for at least o	ne Impacted Rec	eptor (Yes/No)?			No		Yes		Yes
Total Barrier L	.ength (ft)						1,056		2,112		1,920
Barrier Height	Range (ft)						11 to 19		14 to 25		14 to 25
Average Barri	er Height (ft)						16.9		21.6		21.6

Table 15. NSA 19 - Barrier Analysis Results.

Note: All noise levels, including calculated comparisons, averages, and insertion losses, are calculated to the tenth of a dB(A) and then rounded to the nearest whole number for presentation purposes.

Indicates Receptors receiving an Insertion Loss of 5 dB(A) or more.

Indicates Impacted Receptors receiving an Insertion Loss of 7 dB(A) or more.

• NSA 20:

Screening – As cited in the Project Level Highway Traffic Noise Handbook Publication 24 11-15 and the FHWA Title 23: Highways - Part 772-Procedures for Abatement of Highway Traffic Noise and Construction Noise, a screening "rule of thumb" was applied that "The wall dimensions can be estimated based on blocking the line of sight (height) to/from the receptor and extending the barrier 4X the distance measured from the roadway to the receptor."

With this calculation, the closest receptor (20-01) is approximately 50 feet from the roadway. Therefore, a wall 200 feet past the front row impacted receptors on both ends assumes a wall about 2,100 feet long (including the distance between the end receptors) and with a typical line of sight height of 12 feet (for tractor trailer exhaust height) results with a barrier approximately 25,200 square feet. Assuming the feasibility criteria could be met and taking 25,200 SF/4 BR possible, we have a SF/BR value of 6,300, which is > the 2,000 Max SF/BR limit and therefore not reasonable to construct.

5 dB(A) IL - A noise barrier with an average height of 22.4 feet and total length of approximately 672 feet would not provide noise reductions of at least 5 dB(A) for 50 percent of the impacted receptors identified in this NSA. Nor would the barrier satisfy any of the other feasibility criteria. This noise barrier would only provide at least a 5 dB(A) noise reduction to one impacted receptor. The total square footage of the resulting barrier would be approximately 15,072 square feet.

Line-of-Site - A noise barrier with an average height of 16.2 feet and total length of approximately 1,824 feet would not provide noise reductions of at least 5 dB(A) for 50 percent of the impacted receptors identified in this NSA. Nor would the barrier satisfy any of the other feasibility criteria. This noise barrier would only provide a 3 dB(A) average noise reduction to two receptors. This barrier would break the Line-of-Site between all of the impacted receptors and the proposed roadway. The total square footage of the resulting barrier would be approximately 29,473 square feet.

Optimized - A noise barrier with an average height of 22.1 feet and total length of approximately 1,248 feet would not provide noise reductions of at least 5 dB(A) for 50 percent of the impacted receptors identified in this NSA. Nor would the barrier satisfy any of the other feasibility criteria. This noise barrier would provide at least a 6 dB(A) noise reduction to one impacted receptor. This barrier would break the Line-of-Site between two of the impacted receptors and the proposed roadway. The total square footage of the resulting barrier would be approximately 27,552 square feet.

None of the investigated noise barriers satisfy the feasibility criteria. Therefore, based on the results of the analysis completed for this project, a noise barrier is not recommended.

Euture Build (2044)								Abatement C	onsideration		
	Equivalent	valent Existing	Future	(No Barrier)		Case 1		Case 2		Case 3	
Receiver Number o	Number of		No-Build			5 dB	A) IL	Line-o	of-Site	Optin	nized
I.D.	Dwelling Units	(2014)	(2044)	Noise Level	Difference Over Existing	Noise Level	Insertion Loss	Noise Level	Insertion Loss	Noise Level	Insertion Loss
M-37	1	61	63	61	1	60	1	58	3	58	3
M-38	1	63	66	67	4	67	0	66	1	67	0
20-01	1	59	62	77	18	72	5	73	4	70	6
20-02	1	58	61	70	12	70	0	70	0	70	0
Facetikis and Decompility Orthogia					Case 1		Case 2		Case 3		
Feasible and Reasonable Criteria:				5 dB(A) IL		Line-of-Site		Optimized			
Barrier Area (ft²)						15,072		29,473		27,552
Total Number	of Impacted Rec	eptors					3		3		3
Impacted Rec	eptors Receiving	≥ 5 dB(A) Inserti	on Loss				1		0		1
Percent of Im	pacted Receptors	Receiving ≥ 5 d	B(A) Insertion Lo	SS			33%		0%		33%
Is the Barrier	Feasible Based up	oon 5 dB(A) Red	uction Criteria (Y	'es/No)?			Νο		Νο		No
Total Number	of Benefited Rec	eptors (All Rece	ptors Receiving	≥ 5 dB[A] Inserti	on Loss)		1		0		1
Barrier Square	e Footage per Bei	nefited Receptor	(S.F./B.R.)				15,072		29,473		27,552
Is the Barrier	Reasonable from	a S.F./B.R. stand	dpoint (≤ 2,000 t	ft ²) (Yes/No)?			No		No		No
Average Noise	e Reduction for B	enefited Recept	ors (dB[A])				5		0		6
Is 7 dB(A) Inse	ertion Loss goal m	net for at least o	ne Impacted Rec	eptor (Yes/No)?			Νο		Νο		No
Total Barrier L	.ength (ft)						672		1,824		1,248
Barrier Height	Range (ft)						17 to 25		10 to 22		15 to 25
Average Barri	er Height (ft)						22.4		16.2		22.1

Table 16. NSA 20 - Barrier Analysis Results.

Note: All noise levels, including calculated comparisons, averages, and insertion losses, are calculated to the tenth of a dB(A) and then rounded to the nearest whole number for presentation purposes.

Indicates Receptors receiving an Insertion Loss of 5 dB(A) or more.

Indicates Impacted Receptors receiving an Insertion Loss of 7 dB(A) or more.

• NSA 22:

Screening – As cited in the Project Level Highway Traffic Noise Handbook Publication 24 11-15 and the FHWA Title 23: Highways - Part 772-Procedures for Abatement of Highway Traffic Noise and Construction Noise, a screening "rule of thumb" was applied that "The wall dimensions can be estimated based on blocking the line of sight (height) to/from the receptor and extending the barrier 4X the distance measured from the roadway to the receptor."

With this calculation, the closest receptor (22-07) is approximately 100 feet from the roadway. Therefore, a wall 400 feet past the front row impacted receptors on both ends assumes a wall about 2,000 feet long (including the distance between the end receptors) and with a typical line of sight height of 12 feet (for tractor trailer exhaust height) results with a barrier approximately 24,000 square feet. Assuming the feasibility criteria could be met and taking 24,000 SF/6 BR possible, we have a SF/BR value of 4,000, which is > the 2,000 Max SF/BR limit and therefore not reasonable to construct.

5 dB(A) IL - A noise barrier with an average height of 9.7 feet and total length of approximately 1,632 feet would provide noise reductions of at least 5 dB(A) for 83 percent of the impacted receptors identified in this NSA. The barrier would also satisfy each of the other feasibility criteria. This noise barrier would provide at least a 5 dB(A) noise reduction to five impacted receptors, and one non-impacted receptor. The total square footage of the resulting barrier would be approximately 15,888 square feet with a Max SF/BR unit value of 2,648 square feet, which is greater than the maximum 2,000 square feet per benefited unit allowed for the reasonableness criteria.

Line-of-Site - A noise barrier with an average height of 11.8 feet and total length of approximately 1,824 feet would provide noise reductions of at least 5 dB(A) for 83 percent of the impacted receptors identified in this NSA. The barrier would also satisfy each of the other feasibility criteria. This noise barrier would provide at least a 5 dB(A) noise reduction to five impacted receptors, and one non-impacted receptor. This barrier would break the Line-of-Site between all of the impacted receptors and the proposed roadway. The total square footage of the resulting barrier would be approximately 21,504

square feet with a Max SF/BR unit value of 3,584 square feet, which is greater than the maximum 2,000 square feet per benefited unit allowed for the reasonableness criteria.

Optimized - A noise barrier with an average height of 13.5 feet and total length of approximately 1,824 feet would provide noise reductions of at least 5 dB(A) for 83 percent of the impacted receptors identified in this NSA. The barrier would also satisfy each of the other feasibility criteria. This noise barrier would provide at least a 5 dB(A) noise reduction to one non-impacted receptor, and a 7 dB(A) reduction to five impacted receptors and the proposed roadway. The total square footage of the resulting barrier would be approximately 24,672 square feet with a Max SF/BR unit value of 4,112 square feet, which is greater than the maximum 2,000 square feet per benefited unit allowed for the reasonableness criteria.

This noise barrier satisfies the feasibility criteria but not the reasonableness criteria. Therefore, based on the results of the analysis completed for this project, this noise barrier is not recommended.

				Eutona D	(1) (2014)	Abatement Consideration					
Receiver	Equivalent	Existing	Future	Future BL (No B	arrier)	Cas 5 dB	se 1 (A) IL	Cas Line-c	se 2 of-Site	Cas Optir	e 3 nized
I.D.	Dwelling Units	(2014)	(2044)	Noise Level	Difference Over Existing	Noise Level	Insertion Loss	Noise Level	Insertion Loss	Noise Level	Insertion Loss
M-43	1	61	64	62	1	60	2	60	2	60	2
M-44	1	57	60	60	3	59	1	59	1	58	2
M-45	1	66	<u>69</u>	<u>69</u>	3	62	7	62	7	58	11
M-46	1	54	57	56	2	55	1	55	1	53	3
M-47	1	63	67	63	-1	62	0	62	0	62	1
22-01	1	63	66	64	2	62	3	62	3	62	3
22-02	1	65	<i>69</i>	66	1	65	1	65	1	63	3
22-03	1	41	45	44	3	39	5	39	5	34	10
22-04	1	68	72	72	3	65	7	65	7	60	12
22-05	1	68	71	70	2	64	7	64	7	59	12
22-06	1	68	71	70	3	64	6	64	6	60	11
22-07	1	67	71	70	3	64	6	64	6	60	10
22-08	1	62	65	63	2	62	1	62	1	62	1
22-09	1	57	60	60	3	58	2	58	2	56	4
22-10	1	56	59	56	0	55	1	55	1	52	4
22-11	1	58	61	56	-2	56	0	56	0	56	0
22-12	1	57	60	56	-1	56	0	56	0	55	1
22-13	1	59	62	58	-1	58	0	58	0	58	0
22-14	1	54	57	58	4	57	1	57	1	55	2
22-15	1	54	57	57	3	55	1	55	1	54	3
22-16	1	54	57	55	1	54	0	54	0	53	2
22-17	1	56	59	55	0	55	0	55	0	55	1
22-18	1	55	58	54	-1	54	0	54	0	54	1
22-19	1	54	57	53	-1	53	0	53	0	53	1
		Feasible and Rea	sonable Criteria	:		Cas	se 1	Cas	se 2	Case 3	
	-					5 dB	(A) IL	Line-c	of-Site	Optir	nized
Barrier Area (ft²)						15,888		21,504		24,672
Total Number	r of Impacted Red	ceptors					6		6		6
Impacted Rec	eptors Receiving	≥ 5 dB(A) Insert	ion Loss				5		5		5
Percent of Im	pacted Receptor	s Receiving ≥ 5 d	B(A) Insertion L	oss			83%		83%		83%
Is the Barrier	Feasible Based u	pon 5 dB(A) Red	uction Criteria (Yes/No)?			Yes		Yes		Yes
Total Number	r of Benefited Re	ceptors (All Rece	ptors Receiving	≥ 5 dB[A] Inserti	on Loss)		6		6		6
Barrier Squar	e Footage per Be	nefited Recepto	r (S.F./B.R.)				2,648		3,584		4,112
Is the Barrier	Reasonable from	a S.F./B.R. stan	dpoint (≤ 2,000	ft ²) (Yes/No)?			No		No		No
Average Nois	e Reduction for E	enefited Recept	ors (dB[A])				6		6		11
Is 7 dB(A) Inse	ertion Loss goal n	net for at least o	ne Impacted Re	ceptor (Yes/No)	?		Yes		Yes		Yes
Total Barrier	Length (ft)						1,632		1,824		1,824
Barrier Heigh	t Range (ft)						8 to 11		8 to 14		8 to 15
Average Barr	ier Height (ft)						9.7		11.8		13.5

Table 17. NSA 22 - Barrier Analysis Results.

Note: All holse levels, hierard purposes.

All noise levels, including calculated comparisons, averages, and insertion losses, are calculated to the tenth of a dB(A) and then rounded to the nearest whole number for presentation purposes.

Indicates Receptors receiving an Insertion Loss of 5 dB(A) or more.

Indicates Impacted Receptors receiving an Insertion Loss of 7 dB(A) or more.

5.2.2 Summary of Results and Recommendations

Based on studies conducted to date, noise barriers in six of the 14 NSAs retained for feasibility and reasonableness analysis were found to be warranted and feasible. However, none of the noise barriers investigated during this final design analysis were found to be reasonable. Therefore, no mitigation in the form of noise barriers is recommended for this project. 6.0 Construction Noise Consideration and Mitigation Alternatives

6.0 CONSTRUCTION NOISE CONSIDERATION AND MITIGATION ALTERNATIVES

As with any large-scale roadway project, there is a potential for short-term noise impacts during the construction phase of work. In order to lessen these effects, the contractor will be required to operate with the least possible noise and to conduct the work so that annoyance to occupants of nearby properties and the general public will be reduced to a practical minimum. That goal may be accomplished by a combination of strategies, including operating all equipment within appropriate noise controls, screening offensive operations, staging activities to minimize the duration of impacts, and restricting activity to times during the day that are considered to be less noise-sensitive.

7.0 Summary and Conclusions

7.0 SUMMARY AND CONCLUSIONS

As part of the environmental document being prepared for this transportation project, a noise impact analysis was completed to evaluate the warrants, feasibility, and reasonableness of providing noise abatement for impacted receptors.

Noise monitoring was performed at 46 representative sites within the project study area. Following model validation, worst-case existing traffic noise levels were calculated. Existing year (2014) traffic noise impacts were noted at six NSAs within the project study area. Under design year (2044) conditions, an increase in traffic noise levels was also predicted. With the constructed roadway improvements, future noise levels in the design year (2044) are predicted to generally increase by an average of 8 dB(A) throughout the project study area with impacts predicted at 14 NSAs. Since noise impacts were identified, noise abatement was evaluated for the Build Alternative in those locations that are predicted to approach or exceed the noise abatement criteria or experience a substantial increase of 10 dB(A) or more.

Based on this final design noise analysis, no abatement in the form of noise barriers is recommended for construction.

Bibliography

BIBLIOGRAPHY

- A.D. Marble & Company. August 2014. Noise Monitoring Work Plan, S.R 0015, Section 088 Central Susquehanna Valley Transportation Project. A.D. Marble & Company, Conshohocken, Pennsylvania.
- Pennsylvania Department of Transportation (PennDOT). November 2015. Project Level Highway Traffic Noise Handbook, Publication No. 24. PennDOT, Harrisburg, Pennsylvania.
- The Federal Highway Administration (FHWA). Revised July 13, 2010. Federal-Aid Policy Guide Title 23 Code of Federal Regulations, Part 772, "Procedures for Abatement of Highway Traffic Noise and Construction Noise," Final Rule. FHWA, Washington, D.C.

Appendix A

24-Hour and Short-Term Monitoring Data

ISO 17025: 2005, ANSI/NCSL Z540:1994 Part 1 ACCREDITED by NVLAP (an ILAC MRA signatory)

NVLAP Lab Code: 200625-0

Calibration Certificate No.30225

Instrument:	Sound Level Meter
Model:	NL22
Manufacturer:	Rion
Serial number:	00362590
Tested with:	Microphone UC52 s/n 107422
	Preamplifier NH21 s/n 19071
Type (class):	2
Customer:	A.D. Marble & Company
Tel/Fax:	484-533-2500 / 484-533-2599
Tel/Fax:	484-533-2500 / 484-533-2599

Date Calibrated:12/19/2013 Cal Due: 12/19/2014Status:ReceivedIn tolerance:XXXOut of tolerance:See comments:Contains non-accredited tests:Yes XNoCalibration service:Basic XStandardAddress:375 East Elm Street, Suite 200,
Conshohocken, PA 19428-1908

Tested in accordance with the following procedures and standards:

Calibration of Sound Level Meters, Scantek Inc., Rev. 6/22/2012 SLM & Dosimeters – Acoustical Tests, Scantek Inc., Rev. 7/6/2011

Instrumentation used for calibration: Nor-1504 Norsonic Test System:

Instrument - Manufacturer	Description	s/N	Cal. Date	Traceability evidence Cal. Lab / Accreditation	Cal. Due
483B-Norsonic	SME Cal Unit	31052	Oct 7, 2013	Scantek, Inc./ NVLAP	Oct 7, 2014
DS-360-SRS	Function Generator	33584	Sep 30, 2013	ACR Env./ A2LA	Sep 30, 2015
34401A-Agilent Technologies	Digital Voltmeter	US36120731	Sep 30, 2013	ACR Env. / A2LA	Sep 30, 2014
HM30-Thommen	Meteo Station	1040170/39633	Sep 30,2013	ACR Env./ A2LA	Sep 30, 2014
PC Program 1019 Norsonic	Calibration software	v.5.2	Validated Mar 2011	Scantek, Inc.	5 a.
1251-Norsonic	Calibrator	30878	Nov 8, 2013	Scantek, Inc./ NVLAP	Nov 8, 2014
4226-Brüel&Kjær	Multifunction calibrator	2305103	Jul 26, 2013	Scantek, Inc./ NVLAP	Jul 26, 2014

Instrumentation and test results are traceable to SI (International System of Units) through standards maintained by NIST (USA) and NPL (UK).

Environmental conditions:

Temperature (°C)	Barometric pressure (kPa)	Relative Humidity (%)
22.9 °C	100.570 kPa	33.0 %RH

Calibrated by:	Lydon Dawkins	Authorized signatory:	Mariana Buzduga
Signature	Lydon Daverkey	Signature	lub-
Date	12/19/2013	Date	12/26 [2013

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored Z:\Calibration Lab\SLM 2013\RIONL22_00362590_M1.doc

Results summary: Device complies with following clauses of mentioned specifications:

CLAUSES FROM IEC/ANSI STANDARDS REFERENCED IN PROCEDURES:	RESULT ^{2,3}	EXPANDED UNCERTAINTY (coverage factor 2) [dB]
CALIBRATION OF SOUND LEVEL METER - ANSI S1.4 CLAUSE 3.2	Passed	0.2
INPUT AMPLIFIER TEST: GAIN TEST / ATTENUATOR SETTING - ANSI S1.4-1983 CLAUSE 5.3	Passed	0.25
LEVEL LINEARITY TEST - ANSI S1.4-1983, CLAUSE 6.9 & 6.10	Passed	0.25
WEIGHTING NETWORK TEST: A NETWORK - ANSI S1.4-1983 CLAUSE 8.2.1	Passed	0.25
WEIGHTING NETWORK TEST: C NETWORK - ANSI S1.4-1983 CLAUSE 8.2.1	Passed	0.25
WEIGHTING NETWORK TEST: LINEAR NETWORK - ANSI \$1.4-1983 CLAUSE 8.2.1	Passed	0.25
OVERLOAD DETECTOR TEST: A-NETWORK - ANSI S1.4-1983 CLAUSE 8.3.1	Passed	0.25
F/S/I/PEAK TEST: STEADY STATE RESPONSE - ANSI S1.4 1983 CLAUSE 6.4	Passed	0.25
FAST-SLOW TEST: OVERSHOOT TEST - ANSI S1.4 1983 CLAUSE 8.4.1	Passed	0.25
FAST-SLOW TEST: SINGLE SINE WAVE BURST - ANSI S1.4 1983 CLAUSE 8.4.1 & 8.4.3	Passed	0.25
PEAK DETECTOR TEST, SINGLE SQUARE WAVE BURST - ANSI S1.4 1983 CLAUSE 8.4.4	Passed	0.25
RMS DETECTOR TEST: CREST FACTOR TEST - ANSI S1.4-1983 CLAUSE 8.4.2	Passed	0.25
RMS DETECTOR TEST: CONTINUOUS SINE WAVE BURST - ANSI S1.4-1983 CLAUSE 8.4.2	Passed	0.25
TIME AVERAGING TEST: AVERAGING FUNCTIONS - ANSI S1.43 CLAUSE 9.3.2	Passed	0.25
LINEARITY TEST - ANSI S1.43 CLAUSE 9.3.3	Passed	0.15
SUMMATION OF ACOUSTIC TESTS - ANSI S1.4 CLAUSE 5 USING MF CALIBRATOR	Passed	0.2-0.5

¹ The results of this calibration apply only to the instrument type with serial number identified in this report.

² Parameters are certified at actual environmental conditions.

³ The tests marked with (*) are not covered by the current NVLAP accreditation.

Comments: The instrument was tested and met all specifications found in the referenced procedures.

Note: The instrument was tested for the parameters listed in the table above, using the test methods described in the listed standards. All tests were performed around the reference conditions. The test results were compared with the manufacturer's or with the standard's specifications, whichever are larger.

Compliance with any standard cannot be claimed based solely on the periodic tests.

Tests made with the following attachments to the instrument:

Microphone: Rion UC52 s/n 107422	for acoustical test
Preamplifier: Rion NH21 s/n 19071 f	or all tests
Other: line adaptor ADP005 (18pF) for	electrical tests
Accompanying acoustical calibrator:	Metrosonics CL304 s/n 4129
Windscreen: none	

Measured Data: in Test Report #

30225 of 9 + 1 pages.

Place of Calibration: Scantek, Inc. 6430 Dobbin Road, Suite C Columbia, MD 21045 USA

Ph/Fax: 410-290-7726/ -9167 callab@scantekinc.com

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored Z:\Calibration Lab\SLM 2013\RIONL22_00362590_M1.doc

ISO 17025: 2005, ANSI/NCSL Z540:1994 Part 1 ACCREDITED by NVLAP (an ILAC MRA signatory)

NVLAP Lab Code: 200625-0

Calibration Certificate No.30226

Instrument:	Sound Level Meter
Model:	NL22
Manufacturer:	Rion
Serial number:	00362592
Tested with:	Microphone UC52 s/n 107533
	Preamplifier NH21 s/n 19073
Type (class):	2
Customer:	A.D. Marble & Company
Tel/Fax:	484-533-2500 / 484-533-2599

Date Calibrated:12/19/2013Cal Due: 12/19/2014Status:ReceivedSentIn tolerance:XXOut of tolerance:See comments:See comments:Contains non-accredited tests:Yes XContains non-accredited tests:Yes XNoCalibration service:Basic XStandardAddress:375 East Elm Street, Suite 200,
Conshohocken, PA 19428-1908

Tested in accordance with the following procedures and standards:

- Calibration of Sound Level Meters, Scantek Inc., Rev. 6/22/2012
- SLM & Dosimeters Acoustical Tests, Scantek Inc., Rev. 7/6/2011

Instrumentation used for calibration: Nor-1504 Norsonic Test System:

	Providential	c /21	Col Data	Traceability evidence	Cal. Due	
Instrument - Manufacturer	Description	5/N	Cal. Date	Cal. Lab / Accreditation		
483B-Norsonic	SME Cal Unit	31052	Oct 7, 2013	Scantek, Inc./ NVLAP	Oct 7, 2014	
DS-360-SRS	Function Generator	33584	Sep 30, 2013	ACR Env./ A2LA	Sep 30, 2015	
34401A-Agilent Technologies	Digital Voltmeter	US36120731	Sep 30, 2013	ACR Env. / A2LA	Sep 30, 2014	
HM30-Thommen	Meteo Station	1040170/39633	Sep 30,2013	ACR Env./ A2LA	Sep 30, 2014	
PC Program 1019 Norsonic	Calibration software	v.5.2	Validated Mar 2011	Scantek, Inc.	-	
1251-Norsonic	Calibrator	30878	Nov 8, 2013	Scantek, Inc./ NVLAP	Nov 8, 2014	
4226-Brüel&Kjær	Multifunction calibrator	2305103	Jul 26, 2013	Scantek, Inc./ NVLAP	Jul 26, 2014	

Instrumentation and test results are traceable to SI (International System of Units) through standards maintained by NIST (USA) and NPL (UK).

Environmental conditions:

Temperature (°C)	Barometric pressure (kPa)	Relative Humidity (%)
23.4 °C	100.530 kPa	37.5 %RH

Calibrated by:	Lydon Dawkins	Authorized signatory:	Mariana Buzduga
Signature	Lodon Dauckers	Signature	lab
Date	12/19/2013	Date	12/26/2013

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored Z:\Calibration Lab\SLM 2013\RIONL22_00362592_M1.doc

Results summary: Device complies with following clauses of mentioned specifications:

CLAUSES FROM IEC/ANSI STANDARDS REFERENCED IN PROCEDURES:	RESULT ^{2,3}	EXPANDED UNCERTAINTY (coverage factor 2) [dB]
CALIBRATION OF SOUND LEVEL METER - ANSI S1.4 CLAUSE 3.2	Passed	0.2
INPUT AMPLIFIER TEST: GAIN TEST / ATTENUATOR SETTING - ANSI S1.4-1983 CLAUSE 5.3	Passed	0.25
LEVEL LINEARITY TEST - ANSI S1.4-1983, CLAUSE 6.9 & 6.10	Passed	0.25
WEIGHTING NETWORK TEST: A NETWORK - ANSI \$1.4-1983 CLAUSE 8.2.1	Passed	0.25
WEIGHTING NETWORK TEST: C NETWORK - ANSI S1.4-1983 CLAUSE 8.2.1	Passed	0.25
WEIGHTING NETWORK TEST: LINEAR NETWORK - ANSI S1.4-1983 CLAUSE 8.2.1	Passed	0.25
OVERLOAD DETECTOR TEST: A-NETWORK - ANSI S1.4-1983 CLAUSE 8.3.1	Passed	0.25
F/S/I/PEAK TEST: STEADY STATE RESPONSE - ANSI S1.4 1983 CLAUSE 6.4	Passed	0.25
FAST-SLOW TEST: OVERSHOOT TEST - ANSI S1.4 1983 CLAUSE 8.4.1	Passed	0.25
FAST-SLOW TEST: SINGLE SINE WAVE BURST - ANSI S1.4 1983 CLAUSE 8.4.1 & 8.4.3	Passed	0.25
PEAK DETECTOR TEST, SINGLE SQUARE WAVE BURST - ANSI S1.4 1983 CLAUSE 8.4.4	Passed	0.25
RMS DETECTOR TEST: CREST FACTOR TEST - ANSI S1.4-1983 CLAUSE 8.4.2	Passed	0.25
RMS DETECTOR TEST: CONTINUOUS SINE WAVE BURST - ANSI S1.4-1983 CLAUSE 8.4.2	Passed	0.25
TIME AVERAGING TEST: AVERAGING FUNCTIONS - ANSI S1.43 CLAUSE 9.3.2	Passed	0.25
LINEARITY TEST - ANSI S1.43 CLAUSE 9.3.3	Passed	0.15
SUMMATION OF ACOUSTIC TESTS - ANSI S1.4 CLAUSE 5 USING MF CALIBRATOR	Passed	0.2-0.5

¹ The results of this calibration apply only to the instrument type with serial number identified in this report.

² Parameters are certified at actual environmental conditions.

³ The tests marked with (*) are not covered by the current NVLAP accreditation.

Comments: The instrument was tested and met all specifications found in the referenced procedures.

Note: The instrument was tested for the parameters listed in the table above, using the test methods described in the listed standards. All tests were performed around the reference conditions. The test results were compared with the manufacturer's or with the standard's specifications, whichever are larger. Compliance with any standard cannot be claimed based solely on the periodic tests.

Tests made with the following attachments to the instrument:

Microphone: Rion UC52 s/n 107533	for acoustical test
Preamplifier: Rion NH21 s/n 19073 f	or all tests
Other: line adaptor ADP005 (18pF) for	electrical tests
Accompanying acoustical calibrator:	Metrosonics CL304 s/n 4129
Windscreen: none	

Measured Data: in Test Report #

30226 of 9 + 1 pages.

Place of Calibration: Scantek, Inc. 6430 Dobbin Road, Suite C Columbia, MD 21045 USA

Ph/Fax: 410-290-7726/ -9167 callab@scantekinc.com

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored Z:\Calibration Lab\SLM 2013\RIONL22_00362592_M1.doc

ISO 17025: 2005, ANSI/NCSL Z540:1994 Part 1 ACCREDITED by NVLAP (an ILAC MRA signatory)

NVLAP Lab Code: 200625-0

Calibration Certificate No.30227

Sound Level Meter	
NL22	
Rion	
00862938	
Microphone UC52 s/n 109852	
Preamplifier NH21 s/n 20958	
2	
A.D. Marble & Company	
484-533-2500 / 484-533-2599	

Date Calibrated:12/19/2013 Cal Due: 12/19/2014Status:ReceivedIn tolerance:XXXOut of tolerance:See comments:Contains non-accredited tests:Yes XNoCalibration service:Basic XStandardAddress:375 East Elm Street, Suite 200,
Conshohocken, PA 19428-1908

Tested in accordance with the following procedures and standards:

Calibration of Sound Level Meters, Scantek Inc., Rev. 6/22/2012 SLM & Dosimeters – Acoustical Tests, Scantek Inc., Rev. 7/6/2011

Instrumentation used for calibration: Nor-1504 Norsonic Test System:

	-	s/N	Col Data	Traceability evidence	Calli Dina
Instrument - Manufacturer	Description		Cal. Date	Cal. Lab / Accreditation	Cal. Due
483B-Norsonic	SME Cal Unit	31052	Oct 7, 2013	Scantek, Inc./ NVLAP	Oct 7, 2014
DS-360-SRS	Function Generator	33584	Sep 30, 2013	ACR Env./ A2LA	Sep 30, 2015
34401A-Agilent Technologies	Digital Voltmeter	US36120731	Sep 30, 2013	ACR Env. / A2LA	Sep 30, 2014
HM30-Thommen	Meteo Station	1040170/39633	Sep 30,2013	ACR Env./ A2LA	Sep 30, 2014
PC Program 1019 Norsonic	Calibration software	v.5.2	Validated Mar 2011	Scantek, Inc.	-
1251-Norsonic	Calibrator	30878	Nov 8, 2013	Scantek, Inc./ NVLAP	Nov 8, 2014
4226-Brüel&Kjær	Multifunction calibrator	2305103	Jul 26, 2013	Scantek, Inc./ NVLAP	Jul 26, 2014

Instrumentation and test results are traceable to SI (International System of Units) through standards maintained by NIST (USA) and NPL (UK).

Environmental conditions:

Temperature (°C)	Barometric pressure (kPa)	Relative Humidity (%)
· 23.4 °C	100.530 kPa	37.5 %RH

Calibrated by:	Lydon Dawkins /	Authorized signatory:	Mariana Buzduga
Signature	Lydon Dave Keil	Signature	alub
Date	12/19/2012	Date	12/26/2013

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

CALINE CALINE CALINE CALINE CALINE CALINE CALINE CALINE CALINE CALINE

Document stored Z:\Calibration Lab\SLM 2013\RIONL22_00862938_M1.doc

Results summary: Device complies with following clauses of mentioned specifications:

CLAUSES FROM IEC/ANSI STANDARDS REFERENCED IN PROCEDURES:	RESULT ^{2,3}	EXPANDED UNCERTAINTY (coverage factor 2) [dB]
CALIBRATION OF SOUND LEVEL METER - ANSI S1.4 CLAUSE 3.2	Passed	0.2
INPUT AMPLIFIER TEST: GAIN TEST / ATTENUATOR SETTING - ANSI S1.4-1983 CLAUSE 5.3	Passed	0.25
LEVEL LINEARITY TEST - ANSI S1.4-1983, CLAUSE 6.9 & 6.10	Passed	0.25
WEIGHTING NETWORK TEST: A NETWORK - ANSI S1.4-1983 CLAUSE 8.2.1	Passed	0.25
WEIGHTING NETWORK TEST: C NETWORK - ANSI S1.4-1983 CLAUSE 8.2.1	Passed	0.25
WEIGHTING NETWORK TEST: LINEAR NETWORK - ANSI S1.4-1983 CLAUSE 8.2.1	Passed	0.25
OVERLOAD DETECTOR TEST: A-NETWORK - ANSI S1.4-1983 CLAUSE 8.3.1	Passed	0.25
F/S/I/PEAK TEST: STEADY STATE RESPONSE - ANSI S1.4 1983 CLAUSE 6.4	Passed	0.25
FAST-SLOW TEST: OVERSHOOT TEST - ANSI S1.4 1983 CLAUSE 8.4.1	Passed	0.25
FAST-SLOW TEST: SINGLE SINE WAVE BURST - ANSI S1.4 1983 CLAUSE 8.4.1 & 8.4.3	Passed	0.25
PEAK DETECTOR TEST, SINGLE SQUARE WAVE BURST - ANSI S1.4 1983 CLAUSE 8.4.4	Passed	0.25
RMS DETECTOR TEST: CREST FACTOR TEST - ANSI S1.4-1983 CLAUSE 8.4.2	Passed	0.25
RMS DETECTOR TEST: CONTINUOUS SINE WAVE BURST - ANSI S1.4-1983 CLAUSE 8.4.2	Passed	0.25
TIME AVERAGING TEST: AVERAGING FUNCTIONS - ANSI S1.43 CLAUSE 9.3.2	Passed	0.25
LINEARITY TEST - ANSI S1.43 CLAUSE 9.3.3	Passed	0.15
SUMMATION OF ACOUSTIC TESTS - ANSI S1.4 CLAUSE 5 USING MF CALIBRATOR	Passed	0.2-0.5

¹ The results of this calibration apply only to the instrument type with serial number identified in this report.

² Parameters are certified at actual environmental conditions.

³ The tests marked with (*) are not covered by the current NVLAP accreditation.

Comments: The instrument was tested and met all specifications found in the referenced procedures.

Note: The instrument was tested for the parameters listed in the table above, using the test methods described in the listed standards. All tests were performed around the reference conditions. The test results were compared with the manufacturer's or with the standard's specifications, whichever are larger. Compliance with any standard cannot be claimed based solely on the periodic tests.

Tests made with the following attachments to the instrument:

Microphone: Rion UC52 s/n 109852	for acoustical test
Preamplifier: Rion NH21 s/n 20958 f	or all tests
Other: line adaptor ADP005 (18pF) for	electrical tests
Accompanying acoustical calibrator:	Metrosonics CL304 s/n 4129
Windscreen: none	

Measured Data: in Test Report #

30227 of 9 + 1 pages.

Place of Calibration: Scantek, Inc.
6430 Dobbin Road, Suite C
Columbia, MD 21045 USA

Ph/Fax: 410-290-7726/ -9167 callab@scantekinc.com

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored Z:\Calibration Lab\SLM 2013\RIONL22_00862938_M1.doc

ISO 17025: 2005, ANSI/NCSL Z540:1994 Part 1 ACCREDITED by NVLAP (an ILAC MRA signatory)

NVLAP Lab Code: 200625-0

Calibration Certificate No.30228

Instrument:	Sound Level Meter	
Model:	NL22	
Manufacturer:	Rion	
Serial number:	00862937	
Tested with:	Microphone UC52 s/n 109851	
	Preamplifier NH21 s/n 20957	
Type (class):	2	
Customer:	A.D. Marble & Company	
Tel/Fax:	484-533-2500 / 484-533-2599	

Date Calibrated:12/19/2013 Cal Due: 12/19/2014Status:ReceivedSentIn tolerance:XXOut of tolerance:See comments:See comments:Contains non-accredited tests:Yes XContains non-accredited tests:Yes XNoCalibration service:Basic XStandardAddress:375 East Elm Street, Suite 200,
Conshohocken, PA 19428-1908

Tested in accordance with the following procedures and standards: Calibration of Sound Level Meters, Scantek Inc., Rev. 6/22/2012

SLM & Dosimeters – Acoustical Tests, Scantek Inc., Rev. 7/6/2011

Instrumentation used for calibration: Nor-1504 Norsonic Test System:

A Commission of the Second	Description	s/N		Traceability evidence	Cal. Due
Instrument - Manufacturer			Cal. Date	Cal. Lab / Accreditation	
483B-Norsonic	SME Cal Unit	31052	Oct 7, 2013	Scantek, Inc./ NVLAP	Oct 7, 2014
DS-360-SRS	Function Generator	33584	Sep 30, 2013	ACR Env./ A2LA	Sep 30, 2015
34401A-Agilent Technologies	Digital Voltmeter	US36120731	Sep 30, 2013	ACR Env. / A2LA	Sep 30, 2014
HM30-Thommen	Meteo Station	1040170/39633	Sep 30,2013	ACR Env./ A2LA	Sep 30, 2014
PC Program 1019 Norsonic	Calibration software	v.5.2	Validated Mar 2011	Scantek, Inc.	-
1251-Norsonic	Calibrator	30878	Nov 8, 2013	Scantek, Inc./ NVLAP	Nov 8, 2014
4226-Brüel&Kjær	Multifunction calibrator	2305103	Jul 26, 2013	Scantek, Inc./ NVLAP	Jul 26, 2014

Instrumentation and test results are traceable to SI (International System of Units) through standards maintained by NIST (USA) and NPL (UK).

Environmental conditions:

Temperature (°C)	Barometric pressure (kPa)	Relative Humidity (%)	
23.6 °C	100.290 kPa	38.4 %RH	

Calibrated by:	Lydon Dawkins	Authorized signatory:	Mariana Buzduga
Signature	Lydon Darenkeiss	Signature	. lub
Date	12/19/2013	Date	12/26/2013

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored Z:\Calibration Lab\SLM 2013\RIONL22_00862937_M1.doc

Results summary: Device complies with following clauses of mentioned specifications:

CLAUSES ¹ FROM IEC/ANSI STANDARDS REFERENCED IN PROCEDURES:	RESULT ^{2,3}	EXPANDED UNCERTAINTY (coverage factor 2) [dB]
CALIBRATION OF SOUND LEVEL METER - ANSI S1.4 CLAUSE 3.2	Passed	0.2
INPUT AMPLIFIER TEST: GAIN TEST / ATTENUATOR SETTING - ANSI S1.4-1983 CLAUSE 5.3	Passed	0.25
LEVEL LINEARITY TEST - ANSI S1.4-1983, CLAUSE 6.9 & 6.10	Passed	0.25
WEIGHTING NETWORK TEST: A NETWORK - ANSI S1.4-1983 CLAUSE 8.2.1	Passed	0.25
WEIGHTING NETWORK TEST: C NETWORK - ANSI S1.4-1983 CLAUSE 8.2.1	Passed	0.25
WEIGHTING NETWORK TEST: LINEAR NETWORK - ANSI S1.4-1983 CLAUSE 8.2.1	Passed	0.25
OVERLOAD DETECTOR TEST: A-NETWORK - ANSI S1.4-1983 CLAUSE 8.3.1	Passed	0.25
F/S/I/PEAK TEST: STEADY STATE RESPONSE - ANSI S1.4 1983 CLAUSE 6.4	Passed	0.25
FAST-SLOW TEST: OVERSHOOT TEST - ANSI S1.4 1983 CLAUSE 8.4.1	Passed	0.25
FAST-SLOW TEST: SINGLE SINE WAVE BURST - ANSI S1.4 1983 CLAUSE 8.4.1 & 8.4.3	Passed	0.25
PEAK DETECTOR TEST, SINGLE SQUARE WAVE BURST - ANSI S1.4 1983 CLAUSE 8.4.4	Passed	0.25
RMS DETECTOR TEST: CREST FACTOR TEST - ANSI S1.4-1983 CLAUSE 8.4.2	Passed	0.25
RMS DETECTOR TEST: CONTINUOUS SINE WAVE BURST - ANSI S1.4-1983 CLAUSE 8.4.2	Passed	0.25
TIME AVERAGING TEST: AVERAGING FUNCTIONS - ANSI S1.43 CLAUSE 9.3.2	Passed	0.25
LINEARITY TEST - ANSI S1.43 CLAUSE 9.3.3	Passed	0.15
SUMMATION OF ACOUSTIC TESTS - ANSI S1.4 CLAUSE 5 USING MF CALIBRATOR	Passed	0.2-0.5

¹ The results of this calibration apply only to the instrument type with serial number identified in this report.

² Parameters are certified at actual environmental conditions.

³ The tests marked with (*) are not covered by the current NVLAP accreditation.

Comments: The instrument was tested and met all specifications found in the referenced procedures.

Note: The instrument was tested for the parameters listed in the table above, using the test methods described in the listed standards. All tests were performed around the reference conditions. The test results were compared with the manufacturer's or with the standard's specifications, whichever are larger. Compliance with any standard cannot be claimed based solely on the periodic tests.

Tests made with the following attachments to the instrument:

Microphone: Rion UC52 s/n 109851	for acoustical test
Preamplifier: Rion NH21 s/n 20957 f	for all tests
Other: line adaptor ADP005 (18pF) for	electrical tests
Accompanying acoustical calibrator:	Metrosonics CL304 s/n 4129
Windscreen: none	

Measured Data: in Test Report #

30228 of 9 + 1 pages.

Place of Calibration: Scantek, Inc.	
6430 Dobbin Road, Suite C	Ph/Fax: 410-290-7726/ -9167
Columbia, MD 21045 USA	callab@scantekinc.com

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored Z:\Calibration Lab\SLM 2013\RIONL22_00862937_M1.doc

ISO 17025: 2005, ANSI/NCSL Z540:1994 Part 1 ACCREDITED by NVLAP (an ILAC MRA signatory)

NVLAP Lab Code: 200625-0

Calibration Certificate No.30229

Instrument:	Sound Level Meter	
Model:	dB-3100	
Manufacturer:	Metrosonics	
Serial number:	3840	
Tested with:	Microphone Microphone s/n 4664	
Type (class):	2	
Customer:	A.D. Marble & Company	
Tel/Fax:	484-533-2500 / 484-533-2599	

Date Calibrated:12/	20/2013 Ca	Due: 12/20/2014
Status:	Received	Sent
In tolerance:	X	X
Out of tolerance:		
See comments:		
Contains non-accred	dited tests:	Yes X No
Calibration service:	Pacie V	Standard

Calibration service: ____Basic X___Standard Address: 375 East Elm Street, Suite 200, Conshohocken, PA 19428-1908

Tested in accordance with the following procedures and standards: Calibration of Sound Level Meters, Scantek Inc., Rev. 6/22/2012 SLM & Dosimeters – Acoustical Tests, Scantek Inc., Rev. 7/6/2011

Instrumentation used for calibration: Nor-1504 Norsonic Test System:

Instrument - Manufacturer	Description	S/N		Traceability evidence	
maturaturer	Description		Cal. Date	Cal. Lab / Accreditation	Cal. Due
483B-Norsonic	SME Cal Unit	31052	Oct 7, 2013	Scantek, Inc./ NVLAP	Oct 7, 2014
DS-360-SRS	Function Generator	33584	Sep 30, 2013	ACR Env./ A2LA	Sep 30, 2015
34401A-Agilent Technologies	Digital Voltmeter	US36120731	Sep 30, 2013	ACR Env. / A2LA	Sep 30, 2014
HM30-Thommen	Meteo Station	1040170/39633	Sep 30,2013	ACR Env./ A2LA	Sep 30, 2014
PC Program 1019 Norsonic	Calibration software	v.5.2	Validated Mar 2011	Scantek, Inc.	-
1251-Norsonic	Calibrator	30878	Nov 8, 2013	Scantek, Inc./ NVLAP	Nov 8, 2014
4226-Brüel&Kjær	Multifunction calibrator	2305103	Jul 26, 2013	Scantek, Inc./ NVLAP	Jul 26, 2014

Instrumentation and test results are traceable to SI (International System of Units) through standards maintained by NIST (USA) and NPL (UK).

Environmental conditions:

Temperature (°C)	Barometric pressure (kPa)	Relative Humidity (%)
23.3 °C	100.330 kPa	36.6 %RH

Calibrated by:	Lydon Dawkins	Authorized signatory:	Mariana Buzduga
Signature	Lyden Daveken	Signature	lub
Date	12/20/2013	Date	12/26/2012

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored Z:\Calibration Lab\SLM 2013\MdB-3100_3840_M1.doc

Results summary: Device complies with following clauses of mentioned specifications:

CLAUSES FROM IEC/ANSI STANDARDS REFERENCED IN PROCEDURES:	RESULT ^{2,3}	EXPANDED UNCERTAINTY (coverage factor 2) [dB]
CALIBRATION OF SOUND LEVEL METER - ANSI S1.4 CLAUSE 3.2	Passed	0.2
LEVEL LINEARITY TEST - ANSI S1.4-1983, CLAUSE 6.9 & 6.10	Passed	0.25
WEIGHTING NETWORK TEST: A NETWORK - ANSI S1.4-1983 CLAUSE 8.2.1	Passed	0.25
F/S/I/PEAK TEST: STEADY STATE RESPONSE - ANSI S1.4 1983 CLAUSE 6.4	Passed	0.25
FAST-SLOW TEST: OVERSHOOT TEST - ANSI S1.4 1983 CLAUSE 8.4.1	Passed	0.25
FAST-SLOW TEST: SINGLE SINE WAVE BURST - ANSI S1.4 1983 CLAUSE 8.4.1 & 8.4.3	Passed	0.25
RMS DETECTOR TEST: CONTINUOUS SINE WAVE BURST - ANSI S1.4-1983 CLAUSE 8.4.2	Passed	0.25
LINEARITY TEST - ANSI S1.43 CLAUSE 9.3.3	Passed	0.15
SUMMATION OF ACOUSTIC TESTS - ANSI S1.4 CLAUSE 5 USING MF CALIBRATOR	Passed	0.2-0.5
DOSIMETER: EXPONENT CIRCUIT AND INTEGRATOR TEST (ANSI \$1.25 #7.7)	Passed	0.2

¹ The results of this calibration apply only to the instrument type with serial number identified in this report.

² Parameters are certified at actual environmental conditions.

³ The tests marked with (*) are not covered by the current NVLAP accreditation.

Comments: The instrument was tested and met all specifications found in the referenced procedures.

Note: The instrument was tested for the parameters listed in the table above, using the test methods described in the listed standards. All tests were performed around the reference conditions. The test results were compared with the manufacturer's or with the standard's specifications, whichever are larger.

Compliance with any standard cannot be claimed based solely on the periodic tests.

Tests made with the following attachments to the instrument:

Microphone: Metrosonics MK3100R	s/n 4664 for acoustical test
Preamplifier: none	
Other: Metrosonics input cable for db	- 3100
Accompanying acoustical calibrator:	Metrosonics CL304 s/n 4129
Windscreen: none	

Measured Data: in Test Report #

30229 of two sections with seven pages total.

Place of Calibration: Scantek, Inc. 6430 Dobbin Road, Suite C Columbia, MD 21045 USA

Ph/Fax: 410-290-7726/ -9167 callab@scantekinc.com

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored Z:\Calibration Lab\SLM 2013\MdB-3100_3840_M1.doc

ISO 17025: 2005, ANSI/NCSL Z540:1994 Part 1 ACCREDITED by NVLAP (an ILAC MRA signatory)

Calibration Certificate No.30230

Instrument:	Sound Level Meter		
Model:	dB-3100		
Manufacturer:	Metrosonics		
Serial number:	4515		
Tested with:	Microphone Microphone s/n 3852		
Type (class):	2		
Customer:	A.D. Marble & Company		
Tel/Fax:	484-533-2500 / 484-533-2599		

 Date Calibrated:12/20/2013 Cal Due: 12/20/2014

 Status:
 Received

 In tolerance:
 X

 Out of tolerance:
 See comments:

 Contains non-accredited tests:
 Yes X

 Calibration service:
 Basic X

 Status:
 375 East Elm Street, Suite 200,

 Conshohocken, PA 19428-1908

Tested in accordance with the following procedures and standards: Calibration of Sound Level Meters, Scantek Inc., Rev. 6/22/2012 SLM & Dosimeters – Acoustical Tests, Scantek Inc., Rev. 7/6/2011

Instrumentation used for calibration: Nor-1504 Norsonic Test System:

Instrument - Manufacturer	Description	s/N		Traceability evidence	Cal. Due
			Cal. Date	Cal. Lab / Accreditation	
483B-Norsonic	SME Cal Unit	31052	Oct 7, 2013	Scantek, Inc./ NVLAP	Oct 7, 2014
DS-360-SRS	Function Generator	33584	Sep 30, 2013	ACR Env./ A2LA	Sep 30, 2015
34401A-Agilent Technologies	Digital Voltmeter	US36120731	Sep 30, 2013	ACR Env. / A2LA	Sep 30, 2014
HM30-Thommen	Meteo Station	1040170/39633	Sep 30,2013	ACR Env./ A2LA	Sep 30, 2014
PC Program 1019 Norsonic	Calibration software	v.5.2	Validated Mar 2011	Scantek, Inc.	-
1251-Norsonic	Calibrator	30878	Nov 8, 2013	Scantek, Inc./ NVLAP	Nov 8, 2014
4226-Brüel&Kiær	Multifunction calibrator	2305103	Jul 26, 2013	Scantek, Inc./ NVLAP	Jul 26, 2014

Instrumentation and test results are traceable to SI (International System of Units) through standards maintained by NIST (USA) and NPL (UK).

Environmental conditions:

Temperature (°C)	Barometric pressure (kPa)	Relative Humidity (%)
23.3 °C	100.120 kPa	37.7 %RH

Calibrated by:	Lydon Dawkins	Authorized signatory:	Mariana Buzduga
Signature	Lydon Dauchein	Signature	lub
Date	12/20/2013	Date	12120(2013

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored Z:\Calibration Lab\SLM 2013\MdB-3100_4515_M1.doc

Results summary: Device complies with following clauses of mentioned specifications:

CLAUSES FROM IEC/ANSI STANDARDS REFERENCED IN PROCEDURES:	RESULT ^{2,3}	EXPANDED UNCERTAINTY (coverage factor 2) [dB]
CALIBRATION OF SOUND LEVEL METER - ANSI S1.4 CLAUSE 3.2	Passed	0.2
LEVEL LINEARITY TEST - ANSI S1.4-1983, CLAUSE 6.9 & 6.10	Passed	0.25
WEIGHTING NETWORK TEST: A NETWORK - ANSI S1.4-1983 CLAUSE 8.2.1	Passed	0.25
F/S/I/PEAK TEST: STEADY STATE RESPONSE - ANSI S1.4 1983 CLAUSE 6.4	Passed	0.25
FAST-SLOW TEST: OVERSHOOT TEST - ANSI S1.4 1983 CLAUSE 8.4.1	Passed	0.25
FAST-SLOW TEST: SINGLE SINE WAVE BURST - ANSI 51.4 1983 CLAUSE 8.4.1 & 8.4.3	Passed	0.25
RMS DETECTOR TEST: CONTINUOUS SINE WAVE BURST - ANSI \$1.4-1983 CLAUSE 8.4.2	Passed	0.25
LINEARITY TEST - ANSI S1.43 CLAUSE 9.3.3	Passed	0.15
SUMMATION OF ACOUSTIC TESTS - ANSI S1.4 CLAUSE 5 USING MF CALIBRATOR	Passed	0.2-0.5
DOSIMETER: EXPONENT CIRCUIT AND INTEGRATOR TEST (ANSI \$1.25 #7.7)	Passed	0.2

¹ The results of this calibration apply only to the instrument type with serial number identified in this report.

² Parameters are certified at actual environmental conditions.

³ The tests marked with (*) are not covered by the current NVLAP accreditation.

Comments: The instrument was tested and met all specifications found in the referenced procedures.

Note: The instrument was tested for the parameters listed in the table above, using the test methods described in the listed standards. All tests were performed around the reference conditions. The test results were compared with the manufacturer's or with the standard's specifications, whichever are larger. Compliance with any standard cannot be claimed based solely on the periodic tests.

Tests made with the following attachments to the instrument:

Microphone: Metrosonics MK3100F	s/n 3852 for acoustical test		-		
Preamplifier: none		1			
Other: Metrosonics input cable for db	- 3100			-	
Accompanying acoustical calibrator:	Metrosonics CL304 s/n 4129				
Windscreen: none			-		

Measured Data: in Test Report #

30230 of two sections with seven pages total.

Place of Calibration: Scantek, Inc. 6430 Dobbin Road, Suite C Columbia, MD 21045 USA

Ph/Fax: 410-290-7726/ -9167 callab@scantekinc.com

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government. Document stored Z:\Calibration Lab\SLM 2013\MdB-3100_4515_M1.doc

ISO 17025: 2005, ANSI/NCSL Z540:1994 Part 1 ACCREDITED by NVLAP (an ILAC MRA signatory)

NVLAP Lab Code: 200625-0

Calibration Certificate No.30231

Instrument: Model: Manufacturer: Serial number: Class (IEC 60942): Barometer type: Barometer s/n: Customer: Tel/Fax:

Acoustical Calibrator CL304 Metrosonics 4129 1 A.D. Marble & Company 484-533-2500 / 484-533-2599

Status:	Received	Sent
In tolerance:	x	x
Out of tolerance:		
See comments:	4	
Contains non-accred	lited tests: Yes	X No

Address: 375 East Elm Street, Conshohocken, PA 19428-1908

Tested in accordance with the following procedures and standards: Calibration of Acoustical Calibrators, Scantek Inc., Rev. 10/1/2010

Instrumentation used for calibration: Nor-1504 Norsonic Test System:

Instrument - Manufacturer	Description	S/N	Cal Data	Traceability evidence	Cal. Due
			Cal. Date	Cal. Lab / Accreditation	
483B-Norsonic	SME Cal Unit	31061	Jul 18, 2013	Scantek, Inc./ NVLAP	Jul 18, 2014
DS-360-SRS	Function Generator	88077	Aug 30, 2012	ACR Env./ A2LA	Aug 30, 2014
34401A-Agilent Technologies	Digital Voltmeter	MY47011118	Sep 3, 2013	ACR Env./ A2LA	Sep 3, 2014
HM30-Thommen	Meteo Station	1040170/39633	Sep 30, 2013	ACR Env./ A2LA	Sep 30, 2014
140-Norsonic	Real Time Analyzer	1403978	Mar 28, 2013	Scantek, Inc. / NVLAP	Mar28, 2014
PC Program 1018 Norsonic	Calibration software	v.5.2	Validated March 2011	Scantek, Inc.	-
4134-Brüel&Kjær	Microphone	173368	Nov 8, 2013	Scantek, Inc. / NVLAP	Nov 8, 2014
1203-Norsonic	Preamplifier	92271	Oct 24, 2013	Scantek, Inc./ NVLAP	Oct 24, 2014

Instrumentation and test results are traceable to SI (International System of Units) through standards maintained by NIST (USA) and NPL (UK)

Calibrated by:	Lydon Dawkins	Authorized signatory:	Mariana Buzduga
Signature	Lyden Daules	Signature	lub
Date	12/19/2013	Date	12/26/2013

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored as: Z:\Calibration Lab\Cal 2013\M-CL304_4129_M1.doc

Results summary: Device was tested and complies with following clauses of mentioned specifications:

CLAUSES ¹ FROM STANDARDS REFERENCED IN PROCEDURES:	MET ²	NOT MET	COMMENTS
Manufacturer specifications		1	
Manufacturer specifications: Sound pressure level	X		
Manufacturer specifications: Frequency	X		
Manufacturer specifications: Total harmonic distortion	X	-	
Current standards		-	
ANSI S1.40:2006 B.3 / IEC 60942: 2003 B.2 - Preliminary inspection	X		Unit older than the standard
ANSI S1.40:2006 B.4.4 / IEC 60942: 2003 B.3.4 - Sound pressure level	X		Unit older than the standard
ANSI S1.40:2006 A.5.4 / IEC 60942: 2003 A.4.4 - Sound pressure level stability		-	Unit older than the standard
ANSI S1.40:2006 B.4.5 / IEC 60942: 2003 B.3.5 - Frequency	X		Unit older than the standard
ANSI S1.40:2006 B.4.6 / IEC 60942: 2003 B.3.6 - Total harmonic distortion	X		Unit older than the standard

The results of this calibration apply only to the instrument type with serial number identified in this report.

² The tests marked with (*) are not covered by the current NVLAP accreditation.

Main measured parameters ³:

Measured ⁴ /Acceptable ⁵ Tone frequency (Hz):	Measured ⁴ /Acceptable ⁵ Total Harmonic Distortion (%):	Measured ⁴ /Acceptable Level ⁵		
980.45 ± 2.0/1000.0 ± 20.0	1.0 + 0.1/<3			
3		$102.12 \pm 0.12/102.0 \pm 0.4$		

The stated level is valid at reference conditions. 4

The above expanded uncertainties for frequency and distortion are calculated with a coverage factor k=2; for level k=2.00 ⁵ Acceptable parameters values are from the manufacturer specifications

Environmental conditions:

Temperature (°C)	Barometric pressure (kPa)	Relative Humidity (%)	
22.6 ± 1.0	100.60 ± 0.001	39.4 ± 2.0	

Tests made with following attachments to instrument:

Calibrator ½" Adaptor Type: 056-990 (Quest)	
Other:	

Adjustments: Unit was not adjusted.

Comments: The instrument was tested and met all specifications found in the referenced procedures.

Note: The instrument was tested for the parameters listed in the table above, using the test methods described in the listed standards. All tests were performed around the reference conditions. The test results were compared with the manufacturer's or with the standard's specifications, whichever are larger. Compliance with any standard cannot be claimed based solely on the periodic tests.

Measured Data: in Acoustical Calibrator Test Report # 30231 of one page.

Place of Calibration: Scantek, Inc. 6430 Dobbin Road, Suite C Columbia, MD 21045 USA

Ph/Fax: 410-290-7726/ -9167 callab@scantekinc.com

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government. Document stored as: Z:\Calibration Lab\Cal 2013\M-CL304 4129 M1.doc

TABLE B.1a	15-Minute Observed Traffic Data		
TMS01:	2014-08-26 1240 to 1255 Hrs.		
Roadway:	SR 0015 (Westbranch Highway)		
Posted Speed Limit	:: 55 MPH		
	Northbound	Southbound	
venicie rype	4-Lane Highway	4-Lane Highway	
Automobiles:	115	133	
Medium Trucks:	5	3	
Heavy Trucks:	15	8	
Buses:	1	0	
Motorcycles:	2	2	

TABLE B.1b	15-Minute Observed Traffic Data		
TMS01:	2014-08-26 1240 to 1255 Hrs.		
Roadway:	County Line Road		
Posted Speed Limit	:: 35 MPH		
Vehicle Type	West of SR 0015		East of SR 0015
	2-Lane Road		2-Lane Road
Automobiles:	10		8
Medium Trucks:	0		0
Heavy Trucks:	2		0
Buses:	0		0
Motorcycles:	0		0

TABLE B.2a	15-Minute Observed Traffic Data		
TMS02:	2014-08-26 1420 to 1435 Hrs.		
Roadway:	SR 0015 (Westbranch Highway)		
Posted Speed Limit	: 55 MPH		
Vahiela Typa	Northbound		Southbound
venicie rype	4-Lane Highway		4-Lane Highway
Automobiles:	120		123
Medium Trucks:	7		6
Heavy Trucks:	12		12
Buses:	0		0
Motorcycles:	2		3

TABLE B.2b	15-Minute Observed Traffic Data			
TMS02:	2014-08-26	2014-08-26 1420 to 1435 Hrs.		
Roadway:	County Line Road			
Posted Speed Limi	t: 35 MPH			
	East of SR 0015			
venicie i ype	2-Lane Road			
Automobiles:		2		
Medium Trucks:		0		
Heavy Trucks:		0		
Buses:	0			
Motorcycles:		0		

TABLE B.2c	15-Minute Observed Traffic Data		
TMS02:	2014-08-26	435 Hrs.	
Roadway:	Park Road		
Posted Speed Limit	t: 40 MPH		
Mahiala Tura	Northbound		Southbound
venicie rype	2-Lane Road		2-Lane Road
Automobiles:	21		23
Medium Trucks:	0		0
Heavy Trucks:	1		3
Buses:	1		0
Motorcycles:	1		0

TABLE B.3a	15-Minute Observed Traffic Data		
TMS03:	2014-08-26 1530 to 1545 Hrs.		
Roadway:	SR 0015 (Westbranch Highway)		
Posted Speed Limit	:: 55 MPH		
	Northbound	Southbound	
venicie rype	4-Lane Highway	4-Lane Highway	
Automobiles:	128	177	
Medium Trucks:	6	6	
Heavy Trucks:	8	9	
Buses:	0	0	
Motorcycles:	0	3	

TABLE B.4a	15-Minute Observed Traffic Data		
TMS04:	2014-08-27 1030 to 1045 Hrs.		
Roadway:	SR 0147 (Susquehanna Trail)		
Posted Speed Limit	t: 45 MPH		
	Northbound		Southbound
venicie rype	2-Lane Highway		2-Lane Highway
Automobiles:	70		76
Medium Trucks:	6		9
Heavy Trucks:	20		15
Buses:	1		1
Motorcycles:	1		1

TABLE B.5a	15-Minute Observed Traffic Data		
TMS05:	2014-08-27 1210 to 1225 Hrs.		
Roadway:	SR 0147 (Susquehanna Trail)		
Posted Speed Limit	:: 45 MPH		
	Northbound		Southbound
venicie Type	2-Lane Highway		2-Lane Highway
Automobiles:	74		71
Medium Trucks:	3		6
Heavy Trucks:	28		15
Buses:	0		0
Motorcycles:	2		3

TABLE B.6a	15-Minute Observed Traffic Data		
TMS06:	2014-08-27 1500 to 1515 Hrs.		
Roadway:	SR 0147 (Susquehanna Trail)		
Posted Speed Limit	:: 45 MPH		
Vehicle Type	Northbound	Southbound	
venicie rype	2-Lane Highway	2-Lane Highway	
Automobiles:	125	123	
Medium Trucks:	3	8	
Heavy Trucks:	20	19	
Buses:	4	1	
Motorcycles:	1	2	

TABLE B.6b TMS06:	15-Minute Observed Traffic Data 2014-08-27 1500 to 1515 Hrs.		
Roadway:	Ridge Road		
Posted Speed Limit	:: 35 MPH		
Mahiala Tuma	Eastbound		Westbound
venicie rype	2-Lane Road		2-Lane Road
Automobiles:	13		35
Medium Trucks:	3		1
Heavy Trucks:	0		5
Buses:	0		0
Motorcycles:	0		0

TABLE B.7a	15-Minute Observed Traffic Data		
TMS07:	2014-08-27	2014-08-27 1610 to 1625 Hrs.	
Roadway:	SR 0147 (Susquehanna Trail)		
Posted Speed Limit	:: 45 MPH		
Mahiala Tura	Northbound		Southbound
venicie rype	2-Lane Highway		2-Lane Highway
Automobiles:	113		135
Medium Trucks:	8		4
Heavy Trucks:	18		15
Buses:	0		1
Motorcycles:	1		2

TABLE B.8a	15-Minute Observed Traffic Data		
TMS08:	2014-08-28	2014-08-28 0930 to 0945 Hrs.	
Roadway:	SR 0147 (Susquehanna Trail)		
Posted Speed Limit	:: 55 MPH		
	Northbound		Southbound
venicie rype	2-Lane Highway		2-Lane Highway
Automobiles:	42		45
Medium Trucks:	1		4
Heavy Trucks:	10		12
Buses:	0		0
Motorcycles:	0		0

TABLE B.9a	15-Minute Observed Traffic Data				
TMS09:	2014-08-28 1040 to 1055 Hrs.				
Roadway:	SR 0147 (Susquehanna Trail)	SR 0147 (Susquehanna Trail)			
Posted Speed Limit	Posted Speed Limit: 55 MPH				
Vehicle Type	Northbound		Southbound		
	2-Lane Highway		2-Lane Highway		
Automobiles:	32		52		
Medium Trucks:	5		5		
Heavy Trucks:	25		12		
Buses:	0		1		
Motorcycles:	0		0		

TABLE B.10a	15-Minute Observed Traffic Data		
TMS10:	2014-08-28	2014-08-28 1125 to 1140 Hrs.	
Roadway:	SR 0147 (Susquehanna Trail)		
Posted Speed Limit	t: 55 MPH		
Vehicle Type	Northbound		Southbound
	2-Lane Highway		2-Lane Highway
Automobiles:	47		59
Medium Trucks:	6		7
Heavy Trucks:	28		21
Buses:	1		1
Motorcycles:	1		1

TABLE B.10b	15-Minute Observed Traffic Data		
TMS10:	2014-08-28	2014-08-28 1125 to 1140 Hrs.	
Roadway:	SR 0405 (Susquehanna Trail)		
Posted Speed Limi	t: 35 MPH		
	Northbound	Southbound	
venicie Type	2-Lane Highway	2-Lane Highway	
Automobiles:	19	26	
Medium Trucks:	3	2	
Heavy Trucks:	4	4	
Buses:	0	1	
Motorcycles:	2	0	

TABLE B.11a	15-Minute Observed Traffic Data		
TMS11:	2014-08-28	2014-08-28 1215 to 1230 Hrs.	
Roadway:	SR 0147 (Susquehanna Trail)		
Posted Speed Limit	:: 45 MPH		
Mahiala Tura	Northbound		Southbound
venicie rype	2-Lane Highway		2-Lane Highway
Automobiles:	64		81
Medium Trucks:	9		4
Heavy Trucks:	24		24
Buses:	0		0
Motorcycles:	1		2

TABLE B.12a	15-Minute Observed Traffic Data		
TMS12:	2014-08-28	2014-08-28 1310 to 1325 Hrs.	
Roadway:	SR 0147 (Susquehanna Trail)		
Posted Speed Limit	t: 45 MPH		
	Northbound		Southbound
venicie rype	2-Lane Highway		2-Lane Highway
Automobiles:	68		60
Medium Trucks:	3		7
Heavy Trucks:	19		28
Buses:	1		0
Motorcycles:	1		3

TABLE B.12b	15-Minute Observed Traffic Data		
TMS12:	2014-08-28	2014-08-28 1310 to 1325 Hrs.	
Roadway:	Ridge Road		
Posted Speed Limit	:: 35 MPH		
Vehicle Type	Eastbound		Westbound
	2-Lane Road		2-Lane Road
Automobiles:	15		10
Medium Trucks:	4		0
Heavy Trucks:	1		5
Buses:	0		0
Motorcycles:	0		1

TABLE B.13a	15-Minute Observed Traffic Data		
TMS13:	2014-08-28	2014-08-28 1345 to 1400 Hrs.	
Roadway:	SR 0147 (Susquehanna Trail)		
Posted Speed Limit	:: 45 MPH		
Mahiala Tura	Northbound		Southbound
venicie rype	2-Lane Highway		2-Lane Highway
Automobiles:	58		78
Medium Trucks:	5		3
Heavy Trucks:	19		14
Buses:	1		3
Motorcycles:	3		1

TABLE B.13b TMS13:	15-Minute Observed Traffic Data 2014-08-28 1345 to 1400 Hrs.											
Roadway:	Ridge Road											
Posted Speed Limit	t: 35 MPH											
Vahiele Turne	Eastbound	Westbound										
venicie Type	2-Lane Road	2-Lane Road										
Automobiles:	9	13										
Medium Trucks:	1	1										
Heavy Trucks:	3	4										
Buses:	0	0										
Motorcycles:	0	0										
TABLE A.a Receptor M-01.B Hourly Equivalent Sound Level (Leg[h]) Calculation 2014-08												
---	-------------------	--------------	----------------------------	-------------------------------	-------------------------	---------	--	--	--	--	--	--
	20 1505-1505 Hrs.											
		20 150:	5-1505 F	115.								
Цент	45			e le	Hourby							
Hour	15-	min Leq s	Sub-Interv	ais	Lea							
	.00	-15	.30	-45	dB(A)	dB(A)						
15:05	74.4	74.0	72.0	72.1	(T)	UD(A)						
16:05	79.9	74.0	72.5	72.0	72.1							
17:05	71.7	70.8	70.7	70.1	70.9							
18:05	70.7	70.5	70.7	68.7	70.3							
19:05	69.6	70.0	69.5	67.4	69.3							
20:05	68.5	69.1	68.1	69.2	68.7							
20.05	67.8	68.7	68.8	67.7	68.3							
21.05	67.0	68.7	68.1	67.6	67.9							
22.05	67.5	67.1	65.6	62.2	66.1							
23.05	67.5 65.4	60.0	00.0	50.3	62.2							
0.05	62.0	61.2	01.Z	59.3	02.2							
1:05	62.9	61.8	62.5	53.7	61.4							
2:05	65.1	60.2	58.9	65.5	63.3							
3:05	64.2	64.0	62.4	65.1	64.0							
4:05	61.9	65.4	67.0	67.8	66.0							
5:05	69.0	67.9	66.8	68.0	68.0							
6:05	68.3	68.7	69.3	68.6	68.7							
7:05	70.3	69.4	69.7	70.1	69.9							
8:05	69.1	71.5	70.5	72.2	71.0							
9:05	71.1	71.8	72.7	70.6	71.6							
10:05	71.8	70.7	71.6	71.8	71.5							
11:05	72.2	71.8	72.0	71.9	72.0							
12:05	71.2	71.3	72.9	70.6	71.6							
13:05	71.1	70.5	71.5	71.2	71.1							
14:05	72.0	71.9	72.8	77.0	74.0	74						
LEGEN	ND		Loudes Narrow Wide R	t-Hour Range L ange Lou	oudest-Hc idest-Houi	ur						
Valid Data Histogram												
		Invalid Data	Land Va	lid Data 🗕	Impact Th	reshold						

TABLE A.a Receptor M-01.A Hourly Equivalent Sound Level (Leq[h]) Calculation 2014-08											
20 1505-1505 Hrs.											
Hour	15-	min Lea S	Sub-interv	vals	Hourly	Loudest-Hour					
					Leq	Level					
	:00	:15	:30	:45	dB(A)	dB(A)					
15:05	78.5	77.7	76.8	77.2	77.6	78					
16:05	76.5	75.6	75.3	75.0	75.6						
17:05	74.9	74.5	74.5	74.2	74.5						
18:05	71.8	73.0	73.3	73.0	72.8						
19:05	71.3	71.4	70.9	70.9	71.2						
20:05	72.7	70.6	70.4	70.3	71.1						
21:05	70.3	71.8	70.5	70.6	70.8						
22:05	70.9	69.2	69.1	70.5	70.0						
23:05	66.8	68.4	67.2	66.4	67.3						
0:05	63.5	63.2	65.6	64.4	64.3						
1:05	61.8	66.2	68.8	64.0	65.9						
2:05	65.8	67.9	65.2	67.3	66.7						
3:05	65.4	62.8	64.2	70.4	66.8						
4:05	68.7	70.9	69.6	69.7	69.8						
5:05	71.7	71.0	71.3	72.2	71.6						
6:05	73.8	75.1	74.1	72.5	74.0						
7:05	73.0	74.0	72.4	72.4	73.0						
8:05	72.2	69.8	70.2	68.3	70.4						
9:05	66.8	67.2	68.7	66.1	67.3						
10:05	66.5	66.5	66.9	67.2	66.8						
11:05	67.5	73.0	66.1	67.4	69.5						
12:05	65.3	66.2	66.2	65.3	65.7						
13:05	66.0	66.2	64.8	65.9	65.7						
14:05	66.7	67.3	67.5	72.6	69.3						
LEGEN	ND										
			Loudes	st-Hour							
			Narrow	Range L	oudest-Ho	ur					
			Wide R	lange Lou	idest-Hour						
		Valio	d Data Hi	stogram							
٤	30.0										
(P)											
gp) ber (Junop											
	40.0 15:05 17:0	J5 19:05 21:	05 23:05 1	:05 3:05	5:05 7:05	9:05 11:05 13:05					
				TIME OF DAY							
		Invalid Data	Va	lid Data 🗕	Impact Th	reshold					

TABLE A.24a Receptor M-02.B -- Hourly Equivalent Sound Level (Leq[h]) Calculation -- 2014-08-21 1900-1900 Hrs. Hour 15-min Leq Sub-intervals Hourly Loudest-Hour Leq Level dB(A) :00 :30 :45 dB(A) :15 19:00 61.7 63.5 60.7 61.8 62.1 62 20:00 59.6 58.4 57.6 57.6 58.4 21:00 55.9 54.6 54.7 54.4 55.0 22:00 54.4 54.4 54.4 54.4 54.4 23:00 54.4 54.3 54.3 54.3 54.3 54.3 54.3 54.3 54.3 0:00 54.3 1:00 54.3 54.3 54.3 54.3 54.3 2:00 54.3 54.3 54.3 54.3 54.3 3:00 54.3 54.2 54.2 54.2 54.2 4:00 54.2 54.3 54.3 54.3 54.3 5:00 54.3 54.3 54.3 54.3 54.3 54.3 54.3 54.3 54.3 6:00 54.3 7:00 54.3 54.3 54.3 54.3 54.3 8:00 54.3 54.3 54.3 54.3 54.3 9:00 54.4 54.4 54.4 54.5 54.4 10:00 54.6 54.8 54.8 54.8 54.7 54.9 11:00 54.8 54.8 54.9 54.9 12:00 54.9 55.0 55.1 55.1 55.0 13:00 55.1 55.1 55.1 55.1 55.1 14:00 55.0 55.0 54.9 54.9 54.9 15:00 54.8 54.8 54.8 54.7 54.8 16:00 54.7 54.7 54.6 54.6 54.7 54.6 54.6 17:00 54.6 54.6 54.6 18:00 54.6 54.6 54.6 54.6 54.6 LEGEND Loudest-Hour Narrow Range Loudest-Hour Wide Range Loudest-Hour Valid Data Histogram 80.0 70.0 Hourly Leq (dB[A]) 60.0 50.0 40.0 TIME OF DAY Invalid Data Valid Data - Impact Threshold

TABLE A.24aReceptor M-02.A -- Hourly Equivalent
Sound Level (Leq[h]) Calculation -- 2014-08-
21 1900-1900 Hrs.

Hour	15-ı	min Leq S	Sub-interv	vals	Hourly Loudest-Hou				
	-00	-15	-30	- 15	Leq				
10.00	73.5	74.5	73.8	.4J	UD(A)	ub(A)			
20.00	72.4	72.9	72.5	79.7	72.6				
21:00	72.8	73.8	73.8	72.6	73.3				
22:00	72.5	71.9	72.6	71.6	72.2				
23:00	72.1	71.5	72.5	71.2	71.8				
0:00	69.8	72.9	69.3	70.4	70.8				
1:00	70.8	69.0	70.8	71.0	70.5				
2:00	71.0	71.7	67.5	69.9	70.3				
3:00	70.0	68.7	69.2	70.4	69.6				
4:00	74.4	71.8	72.2	70.6	72.5				
5:00	71.8	72.6	73.6	74.0	73.1				
6:00	73.9	75.1	74.1	74.7	74.5				
7:00	73.9	74.9	75.9	74.7	74.9				
8:00	74.8	76.4	75.3	75.1	75.5				
9:00	73.9	76.6	75.7	75.1	75.5				
10:00	74.2	75.1	76.4	75.2	75.3				
11:00	74.8	75.9	75.1	74.8	75.2				
12:00	75.3	75.7	74.8	73.7	74.9				
13:00	74.3	73.4	74.4	74.7	74.2				
14:00	73.8	74.7	76.2	74.4	74.9				
15:00	74.6	75.6	75.2	75.4	75.2				
16:00	76.2	76.5	75.2	75.3	75.9	76			
17:00	75.0	75.1	75.6	75.3	75.2				
18:00	75.2	75.8	75.1	73.2	74.9				
LEGEN	1D		Loudes Narrow Wide R	t-Hour Range L Range Lou	oudest-Ho udest-Hour	ur			
70.0 60.0 60.0 60.0 60.0 60.0 19.00 21.00 2									
		Invalid Data	Va	lid Data 🗕	Impact Th	reshold			

Site # <u>M-02</u>	Short-term Noise Monitoring Description:
MONITORING	NFORMATION
Notes: AU2_	Off Peak 0302 Date: 8/26/14- Start Time: 3:2 - 2
	End Time:
	Meter ID: 862938
	Roadway: SR 0015
	Cars:
	MT:
	Monitored Leq: 65,1
SITE SKETCH: North Arrow	Site Specifics
N	Employee ID:
××	Atmospheric Conditions :
Plan View	J
	SR 0015 SB
	HOUSE
<u>21088-3ection</u>	

TABLE	TABLE A.2Receptor M-02 15-Minute Equivalent Sound Level (15-min Leq) Calculation TMS03: 2014-08-26 1530-1545 Hrs.								
	No	ise Measu	Irement I	Data		Calcula	ted Data	Traffic Volume Nosie Level	
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min		
	Leq					Leq	Leq		
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)		
15:30	64.3	73.0	89.8	68.7	47.7	64.4	65.1	65	
15:31	57.5	67.5	83.0	62.6	47.9			Valid Data Histogram	
15:32	65.4	77.6	92.1	68.9	52.9			Valid Data Histografii	
15:33	63.6	71.3	88.1	68.0	47.4		^{80.0} T		
15:34	66.8	79.6	95.9	68.1	51.4				
15:35	63.2	74.6	92.4	67.8	49.6	66.4	70.0		
15:36	65.3	73.6	90.8	69.1	57.4		3[A])		
15:37	69.3	79.1	95.9	73.8	60.4		90) 60.0 -	┊┝ <u>╼</u> ┥┼┧┼┧┼┧┝┥┝┥┝┑┝┓┝ ┍ ┥╽╌ <mark>┑</mark> ┥┝┤╎	
15:38	62.1	73.4	93.2	66.8	50.0		-min L		
15:39	67.8	77.7	97.3	70.7	57.5		50.0		
15:40	60.7	70.7	85.6	65.9	48.2	64.4			
15:41	67.1	78.2	96.4	70.5	53.8		40.0 +	15:30 15:32 15:34 15:36 15:38 15:40 15:42 15:44	
15:42	61.9	68.5	85.4	66.6	49.2		_	TIME OF DAY	
15:43	63.9	74.7	89.1	67.7	46.5			Invalid Data Valid Data	
15:44	65.2	76.6	93.0	68.8	52.7			Impact Threshold - Lmax	

-	Short-term	Noise	Monitoring	1
(, ~		1 1	/ 0.5	1

Site #3 M-03 Description: We Register tral Vorterties

MONITORING INFORMATION

Notes:	House Number 96	Off Peak Date: <u>8</u> /22/14	
		Start Time: 3:30	
		End Time: 3:45	
	lawn monter active on lamity Line PI	Meter ID: 56 2937	
		Roadway: RJ. 15 NB	
		Cars: 128	Rr. O
	· · · · · · · · · · · · · · · · · · ·	MT: 6	1) vs. 🗢
		нт: 8	Mofe! C
		Monitored Leg: 56.8	

SITE SKETCH:

TABLE	TABLE A.3Receptor M-03 15-Minute Equivalent Sound Level (15-min Leq) CalculationTMS03: 2014-08-26 1530-1545 Hrs.								
	No	ise Measu	Irement I	Data		Calculated Data		Traffic Volume Nosie Level	
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min		
	Leq					Leq	Leq		
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)		
15:30	58.1	64.9	87.5	61.3	52.8	56.3	56.8	57	
15:31	54.7	59.9	80.5	57.5	51.9			Valid Data Histogram	
15:32	56.8	62.6	83.6	59.1	52.6			Value Data Histogram	
15:33	53.7	58.8	82.4	57.2	50.4		^{80.0} T		
15:34	56.6	60.8	84.2	58.8	52.6				
15:35	57.2	63.2	85.6	61.2	51.6	58.0	70.0		
15:36	56.3	63.2	87.1	59.3	52.7		3[A])		
15:37	60.1	69.4	87.8	63.1	54.9		10 60.0 -		
15:38	56.6	63.5	88.7	59.2	53.1		'nin L		
15:39	58.4	65.4	88.5	60.6	55.5		÷ 50.0 -		
15:40	53.6	56.4	80.1	55.0	51.5	56.0			
15:41	58.9	65.6	87.0	62.6	53.1		40.0 +	15:30 15:32 15:34 15:36 15:38 15:40 15:42 15:44	
15:42	54.7	58.1	80.5	56.4	52.5		_	TIME OF DAY	
15:43	55.6	61.4	80.3	57.9	52.5			Invalid Data Valid Data	
15:44	55.3	60.3	80.4	57.3	52.7			Impact Threshold - Lmax	

	$\frac{35}{2564} = \frac{1274}{1274}$ $\frac{1274}{1274}$	
	Roadway: 21.15 NB Cars: 115 MT: 5 HT: 15 Monitored Leq: 54.0	
SITE SKETCH: North Arrow	Site Specifics	7
	Employee ID: B/5	7
N>	Atmospheric Conditions : htt and close chine	-
Plan/View	1 17 111 11CAU 3F1C3	┥
The fi	County Line Rd Tree Row	
A=Mete-	Res draway beation	
lez	To Cartyline Rd Limetha	

T

TABLE	TABLE A.4Receptor M-04 15-Minute Equivalent Sound Level (15-min Leq) CalculationTMS01: 2014-08-26 1240-1255 Hrs.							
	No	ise Meası	urement I	Data		Calculated Data		Traffic Volume Nosie Level
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min	
	Leq					Leq	Leq	
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)	
12:40	50.2	56.6	75.8	52.7	46.7	53.3	54.0	54
12:41	57.0	66.8	90.0	61.3	47.2			Valid Data Histogram
12:42	52.0	56.3	80.6	54.3	49.2			Valid Data Histografii
12:43	51.2	57.9	81.6	53.5	45.4		^{80.0} T	
12:44	52.4	57.1	80.7	54.9	47.8			
12:45	54.6	60.1	82.9	57.4	47.0	55.0	70.0	
12:46	56.9	62.5	89.2	60.3	46.7		3[A])	
12:47	50.5	59.0	78.5	53.6	44.7		90 60.0 -	
12:48	57.0	66.0	89.7	61.1	47.4		-min L	
12:49	52.5	59.6	83.3	55.2	48.4		€ 50.0	┍┑╡┝╡┝─╗┝╡┝╡┝╡┝┑┝╕┝╡┝╡┝╡┝╡┝╡┝╡┝
12:50	52.5	59.4	82.5	54.6	49.0	53.4		
12:51	53.9	59.1	84.2	56.7	49.9		40.0 +	12:40 12:42 12:44 12:46 12:48 12:50 12:52 12:54
12:52	55.0	62.2	81.9	58.0	51.1		_	TIME OF DAY
12:53	52.5	56.3	82.1	54.3	49.8			Invalid Data
12:54	52.6	57.1	83.0	55.4	48.1			Impact Threshold - Lmax

S.R. 0015, Section 088 - Central Susquehanna Valley Transportation Project Short-term Noise Monitoring

Site # M-05 **Description:** 2506 COUNTY LINE ROAD

MONITORING INFORMATION

		Off Peak
Notes: AU2 - 0105	Date:	8/26/14
	Start Time:	12:40
(:OUNTY LINE: WEST OF 15 EAST OF 15	End Time:	12:55
	Meter ID:	362592
M	_	
<u> </u>	_	
<u> </u>	Roadway:	
Moro	Cars:	
12:53 BACK-UR BEEPER	MT:	
	HT:	
	Monitored Leq:	51.8

SITE SKETCH:

TABLE	TABLE A.5Receptor M-05 15-Minute Equivalent Sound Level (15-min Leq) CalculationTMS01: 2014-08-26 1240-1255 Hrs.								
	No	ise Measu	urement [Data		Calculated Data		Traffic Volume Nosie Level	
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min		
	Leq					Leq	Leq		
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)		
12:40	50.1	52.9	76.4	51.3	49.1	51.8	51.8	52	
12:41	54.8	61.3	87.0	59.2	48.5			Valid Data Histogram	
12:42	53.4	63.7	85.5	55.5	48.1			Valu Data Histografii	
12:43	47.1	53.1	77.9	49.6	43.3		^{80.0}		
12:44	49.4	52.5	78.1	50.6	48.0				
12:45	50.9	57.6	78.7	53.4	48.0	52.5	70.0		
12:46	54.3	62.1	83.7	56.8	50.3		B[A])	- <u>-</u>	
12:47	49.0	60.8	78.7	51.1	41.2		P) 60.0		
12:48	55.1	62.9	87.6	59.2	46.5		-min L		
12:49	49.9	60.2	80.3	52.7	44.6		50.0		
12:50	49.5	55.8	81.0	52.1	45.4	51.0			
12:51	49.6	62.1	79.3	51.1	45.3		40.0 +	12:40 12:42 12:44 12:46 12:48 12:50 12:52 12:54	
12:52	52.9	62.6	82.4	57.2	48.0		_	TIME OF DAY	
12:53	49.7	58.3	78.9	51.8	47.0			Invalid Data	
12:54	52.2	64.2	80.1	53.1	47.2			Impact Threshold - Lmax	

S.R. 0015, Section 088 - Central Susquehanna Valley Transportation Project Short-term Noise Monitoring Site # M-06 Description: 1037 Mails Hallow Rd

MONITORING INFORMATION

SITE SKETCH:

TABLE	A.6	Recept TMS01	or M-06 : 2014-	6 15-N 08-26 12	linute E 240-125	quivale 5 Hrs.	nt Sour	nd Level (15-min Leq) Calculation
Noise Measurement Data						Calcula	ted Data	Traffic Volume Nosie Level
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min	
	Leq					Leq	Leq	
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)	
12:40	46.2	54.7	67.2	48.0	44.4	47.5	47.5	47
12:41	50.0	58.3	77.1	53.1	44.4			Valid Data Histogram
12:42	47.1	52.4	69.9	48.5	44.8			Valid Data Histogram
12:43	46.2	51.4	66.1	47.0	45.2		^{80.0} T	
12:44	46.9	55.3	74.5	47.7	45.7			
12:45	47.0	50.3	69.3	48.4	45.1	48.0	70.0	
12:46	49.3	55.7	75.5	52.5	44.3		B[A])	
12:47	46.1	54.0	71.9	47.2	44.9		P 60.0	-
12:48	48.7	60.2	82.9	50.5	45.1		-min L	
12:49	57.7	70.7	86.9	62.0	4 5.2		50.0	
12:50	45.9	51.2	73.6	46.8	44.1	46.9		
12:51	45.4	48.7	68.8	46.5	44.1		40.0 +	12:40 12:42 12:44 12:46 12:48 12:50 12:52 12:54
12:52	48.4	53.8	70.5	49.8	46.4		_	TIME OF DAY
12:53	46.9	51.3	72.2	48.7	44.9			Invalid Data Valid Data
12:54	47.4	51.9	69.9	48.9	46.3			Impact Threshold - Lmax
12:49 - 1-mir	n Leq despik	ed for Airplan	e flyover.					

Short-term Noise Monitoring

TABLE A.7 Receptor M-07 15-Minute I TMS01: 2014-08-26 1240-12						quivale 5 Hrs.	nt Sour	nd Level (15-min Leq) Calculation
	No	ise Meası	irement l	Data		Calcula	ted Data	Traffic Volume Nosie Level
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min	
	Leq					Leq	Leq	
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)	
12:40	48.6	50.4	72.8	49.6	47.2	47.8	48.5	48
12:41	47.1	50.6	77.9	48.7	45.9			Valid Data Histogram
12:42	46.9	48.3	70.4	47.6	45.8			Valu Data Histografii
12:43	47.7	49.2	69.5	48.5	46.7		^{80.0} T	
12:44	48.3	56.3	75.2	48.9	47.1			
12:45	47.9	50.5	74.7	48.7	47.0	48.2	70.0	
12:46	47.5	56.8	81.5	48.5	46.4		([V])	
12:47	48.1	54.9	75.4	50.8	45.2		90) 60.0 -	
12:48	49.6	57.3	78.1	52.4	46.4		'nin	
12:49	47.3	52.9	78.9	49.6	44.5		50.0	
12:50	46.6	53.1	72.9	47.7	44.5	49.4		
12:51	47.5	49.6	70.3	48.4	46.5		40.0 +	12:40 12:42 12:44 12:46 12:48 12:50 12:52 12:54
12:52	51.0	62.0	73.2	54.1	47.7		_	TIME OF DAY
12:53	50.3	57.1	72.3	53.0	48.2			Invalid Data Valid Data
12:54	49.9	59.6	71.5	51.0	47.9			Impact Threshold - Lmax

0 ⁸	
MONITORING INFORMATION	
Of	f Peak
Notes: Date: <u>7</u>	26/20
End Time:	
Meter ID: <u>_</u>	,7590
Roadway:	
Cars:	
Monitored Leq: 5	1.1
SITE SKETCH: North Arrow Site Specifics	
<u></u>	
Atmospheric Conditions : Sun y	
Plan View	1.
6 TIZEES	\frown
	St
	2
Pour Y	7
FEVLIE	> 0
CO CO I HEUSE	F
	- F
METER	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{C}}}}}}$
	$\left(\right)$
	\geq
	$\boldsymbol{\zeta}$
	<u> </u>
<u>crossisection</u>	ROAD
Harse H	12
WILL (NODE)	
(B) (C) HETTING	
WHAR .	

PORD

TABLE A.8Receptor M-08 15-Minute Equivalent Sound Level (15-min Leq) CalculationTMS02:2014-08-26 1420-1435 Hrs.								
	No	ise Meası	Irement [Data		Calculated Data		Traffic Volume Nosie Level
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min	
	Leq					Leq	Leq	
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)	
14:20	55.9	63.1	83.8	57.4	53.4	56.7	55.5	56
14:21	53.8	58.0	81.5	55.7	51.1			Valid Data Histogram
14:22	56.0	69.2	83.7	58.8	50.1			Valid Data Histogram
14:23	56.7	71.0	84.1	59.2	49.6		^{80.0} T	
14:24	59.3	72.8	88.8	63.3	53.4			_
14:25	54.9	70.1	85.7	56.4	52.0	54.6	70.0	
14:26	54.7	59.7	84.1	57.0	51.6		3[A])	
14:27	53.9	59.9	83.4	56.2	50.7		면 60.0 - 평	<u></u>
14:28	54.7	60.5	84.3	57.3	50.3		-min L	
14:29	54.9	60.4	81.6	57.6	49.1		€ 50.0 -	
14:30	53.5	59.1	82.3	56.2	49.1	54.9		
14:31	56.5	61.3	83.9	58.7	52.3		40.0 +	14:20 14:22 14:24 14:26 14:28 14:30 14:32 14:34
14:32	55.4	61.7	84.2	58.9	49.3		_	TIME OF DAY
14:33	55.5	61.2	83.5	58.8	50.4			Invalid Data Valid Data
14:34	52.1	58.2	81.7	55.3	47.7			Impact Threshold - Lmax

S.R. 0015, Section 088 - Central Susquehanna Valley Transportation Project Short-term Noise Monitoring **Description:** Site # M-09 SEVEN KITCHENS ROAD **MONITORING INFORMATION Off Peak** Notes: Av2-0409 Date: 8/27/2014 Start Time: 10:30 AM End Time: 10:45 AM Meter ID: 862937 Roadway: <u>S.P. @ 0147</u> Cars: MT: HT: Monitored Leq: 44 SITE SKETCH: Site Specifics North Arrow Employee ID: FES N Atmospheric Conditions : 73° <u> Plan View</u> SP 0147 SUSQUEHANNA RIVER ISLAND Ż TREES FENCE 9 30 8 ALAGE KITCHENS ROAD SEVEN Cross-Section

TABLE	A.9	Recept TMS04	or M-09 : 2014-	9 15-N 08-27 1	linute E 030-104	quivale 5 Hrs.	nt Soui	nd Level (15-min Leq) Calculation
	No	ise Meası	urement I	Data		Calculated Data		Traffic Volume Nosie Level
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min	1
	Leq					Leq	Leq	
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)	
10:30	43.1	47.3	68.8	43.8	42.6	43.4	44.1	44
10:31	42.8	46.4	70.6	43.1	42.3			Valid Data Histogram
10:32	43.4	44.5	69.2	43.9	42.9			Valu Data Histogram
10:33	43.8	44.8	70.5	44.2	43.5		^{80.0} T	
10:34	43.9	46.2	70.8	44.5	43.5			
10:35	44.5	46.9	72.8	45.2	43.8	45.1	70.0	
10:36	44.1	47.7	69.0	44.6	43.6		3[A])	
10:37	46.2	53.2	70.8	49.1	43.4		P 60.0	
10:38	45.4	49.7	70.4	47.6	43.4		-min L	-
10:39	44.8	49.7	70.4	46.3	43.8		50.0	
10:40	44.0	45.3	72.1	44.4	43.6	43.6		
10:41	43.6	44.9	69.9	44.0	43.3		40.0 +	10:30 10:32 10:34 10:36 10:38 10:40 10:42 10:44
10:42	43.5	44.5	70.4	44.0	43.1		_	TIME OF DAY
10:43	43.4	44.6	69.7	43.8	43.1			Invalid Data
10:44	43.5	44.6	69.2	44.0	43.1			Impact Threshold - Lmax

S.R. 0015	, Section 088 - Central Susquehanna Valley Transportation Project
Site # 4M-10	Short-term Noise Monitoring
······	
MONITORING IN	IFORMATION
	Off Peak
Notes: AUZ	$\underline{-04-10}$ Date: $\underline{A_{1}}$ $\underline{720'4}$
	Start Time:
	Meter ID: <u>462938</u>
	Roadway:
·	Cars:
	MT:
	
	Monitored Leq.
SITE SKETCH:	Site Specifics
	Atmospheric Conditions :
Plan View	
	Ner"7.
	\mathcal{O}_{Fa}
M	the third fire
1.0	
	V DEDS
	Steps
	Contract
Cross-Section	
	250 ft
,	3oft
	D'VPP
	Z 1. Kinin

TABLE A.10 Receptor M-10 15-Minute Equiva TMS04: 2014-08-27 1030-1045 Hrs						quivale 5 Hrs.	ent Soui	nd Level (15-min Leq) Calculation
	No	ise Measu	irement l	Data		Calcula	ted Data	Traffic Volume Nosie Level
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min	
	Leq					Leq	Leq	
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)	
10:30						0.0	#DIV/0!	#DIV/0!
10:31	_							Valid Data Histogram
10:32								Valid Data Histografii
10:33							^{80.0} T	
10:34								
10:35						0.0	70.0	
10:36							3[A])	
10:37							90) 60.0 80	
10:38							-min L	
10:39							50.0	
10:40						0.0		
10:41							40.0 +	10:30 10:32 10:34 10:36 10:38 10:40 10:42 10:44
10:42							_	TIME OF DAY
10:43								Invalid Data Valid Data
10:44								Impact Threshold - Lmax
10:30 - 5-mii	n Leq despik	ed for No Dat	a.10:35 - 5-r	nin Leq despi	ked for No Da	ata.10:40 - 5-	min Leq desp	piked for No Data.

Vall ~t **.**...

MONITORING I	NFORMATION
Notes:	Off I Date: <i>ド</i> /クラ
	End Time:
	Roadway:
<u> </u>	Cars:
	MI: HT:
	Monitored Leq: 42
SITE SKETCH:	
North Arrow	Site Specifics
	Employee ID: J. Driscoll
	Atmospheric Conditions : $Smn M$
Plan View	A - RINER
\sim	FA FO NO FO N
	The second secon
M	2 3
- and a second state of the second state of th	
	METER
\mathcal{Y}°	
	0
ING WAL	t Fl
LOUT	JOTAINS
Cross-Section	
o ol	M D CLAR M
	NIL A DEWIL
Ň	TTAKE I

TABLE A.11 Receptor M-11 15-Minute E TMS04: 2014-08-27 1030-104							nt Soui	nd Level (15-min Leq) Calculation
	No	ise Meası	Irement I	Data		Calculated Data		Traffic Volume Nosie Level
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min	
	Leq					Leq	Leq	
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)	
10:30	41.7	48.1	72.4	44.1	39.0	43.2	43.4	43
10:31	41.6	45.6	72.8	42.9	39.4			Valid Data Histogram
10:32	44.2	49.3	73.4	46.1	42.1			Valu Data Histogram
10:33	42.2	47.0	73.9	43.0	41.2		^{80.0} T	
10:34	45.1	56.3	81.3	46.7	42.6			
10:35	47.9	62.2	78.8	51.1	42.2	44.1	70.0	
10:36	42.1	47.1	70.6	44.2	39.7		3[A])	
10:37	40.4	42.8	72.5	41.4	39.2		P 60.0	
10:38	42.4	48.4	72.8	43.9	40.5		-min L	-
10:39	43.5	47.1	73.7	44.6	42.2		50.0	
10:40	42.2	49.1	71.8	43.8	40.1	43.0		
10:41	40.6	42.9	72.8	41.5	39.7		40.0 +	
10:42	41.8	44.7	72.8	43.6	40.2		_	TIME OF DAY
10:43	45.0	49.5	74.9	48.1	42.2			Invalid Data
10:44	43.8	48.6	71.9	46.9	39.6			Impact Threshold - Lmax

S.R. 0015,	Section 088 - Central Susquehanna Valley Transportation Project Short-term Noise Monitoring
	Description. Varalin Norne IVOIE-14
MONITORING INI	FORMATION
Notes: {affrac{}{affr	Mise Mard Mare Off Peak
	Roadway: Cars: MT: HT:
SITE SKETCH:	Monitored Leq: 41.8
North Arrow	Site Specifics
₹N	Employee ID: B6 Atmospheric Conditions :
<u>Plan View</u>	2.
مىمى الىمارة مىكىلىس بەرەپىيەتىنى ، مۇرىيەتى بەرەپ	Foland
[7do	ik Rive Bost Pock
	34' J D Mainthined yard
Trees Screened Born EM	Shot Res
Cross-Section	Res Retaining wall Ishuel

-

TABLE	Recept TMS04	or M-12 : 2014-	2 15-N 08-27 1	linute E 030-104	quivale 5 Hrs.	nt Sou	nd Level (15-min Leq) Calculation			
	Noise Measurement Data					Calcula	ted Data	Traffic Volume Nosie Level		
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min	1		
	Leq					Leq	Leq			
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)			
10:30	39.3	40.6	72.1	40.0	38.6	40.2	41.8	42		
10:31	38.7	40.7	74.5	39.3	37.8			Valid Data Histogram		
10:32	40.6	45.1	73.0	41.1	39.8			Valio Data Histografii		
10:33	41.1	42.6	73.4	42.1	40.0		80.0			
10:34	40.7	43.2	71.1	42.1	39.5					
10:35	42.6	45.6	72.6	43.8	41.4	41.6	70.0			
10:36	41.0	45.2	72.6	44.5	37.8		3[A])			
10:37	38.7	40.8	72.1	39.7	37.2		망 60.0 · 정			
10:38	41.7	43.3	73.2	42.2	41.0		-min L	-		
10:39	42.8	44.3	76.0	43.9	41.6		50.0	-		
10:40	45.8	53.2	81.9	46.5	43.7	43.2				
10:41	40.9	48.7	77.1	42.8	38.9		40.0	10:30 10:32 10:34 10:36 10:38 10:40 10:42 10:44		
10:42	42.4	43.9	75.1	43.5	41.3		_	TIME OF DAY		
10:43	41.2	42.6	73.6	41.9	40.5			Invalid Data Valid Data		
10:44	43.7	45.6	73.7	44.9	42.4			Impact Threshold - Lmax		

011 11 11 13	Short-term Noise Monitoring	-	-
Site 105 M-1->	Description:		· · · · · · · · · · · · · · · · · · ·
			<u> </u>
MONITORING IN	FORMATION		
Notes: AU?	2_05_13	Date:	Aur >7 2014
		Start Time:	
		End Time:	11 70 70
	lome on let		02-1-50
		Roadway:	147
	· · · · · · · · · · · · · · · · · · ·	Cars:	
	· · · ·	MT:	
		HT:	
		Monitored Leq:	65.4
SITE SKETCH:	04-0-15		
North Arrow			· · · ·
-7			
	Atmospheric Conditions :		
<u>Plan View</u>	•		
	147		
$\left \left\langle \right\rangle \right $	Pole ist	veen their	
$ \setminus \setminus$	set Fing appring be		
	il my	\sim	
	NE on SI	~ 5	
		J	
	7 7 201	シー (
	200 100		
	Soft The fock	-	
50 [the way of digerty	above to	cK
20	Metck 15 Order 19		
I Cross-Section		· · · · · · · · ·	
	6 Goft		
	$\backslash \downarrow$		
	Rocc		

TABLE	A.13	Recept TMS05	or M-13 : 2014-	8 15-N 08-27 12	linute E 210-122	quivale 5 Hrs.	nt Sour	nd Level (15-min Leq) Calculation
Noise Measurement Data					Calculated Data		Traffic Volume Nosie Level	
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min	
	Leq					Leq	Leq	
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)	
12:10	63.7	71.0	92.5	68.2	48.4	64.4	65.4	65
12:11	60.6	70.4	86.7	64.3	47.9			Valid Data Histogram
12:12	65.2	74.8	92.1	69.8	55.6			Valid Data Histografii
12:13	62.4	72.9	91.2	66.1	48.8		^{80.0} T	
12:14	67.2	77.4	99.5	71.2	52.5			
12:15	67.4	75.3	98.5	72.1	58.0	65.9	70.0	
12:16	67.3	80.7	101.3	69.2	51.6		([V])	
12:17	61.6	73.1	89.1	64.5	48.4		P) 60.0	┤┝┲ <u>┓</u> ┥┠┥┠┥┠┥┠┑┠┥┝┥┝┥┝┥┝┥┝┥┝┥┠┥┠┥┠
12:18	65.6	75.1	96.7	69.4	52.4		-min L	
12:19	65.7	73.4	94.9	69.3	55.0		÷ 50.0 ···	
12:20	62.9	73.9	90.8	68.5	47.4	65.8		
12:21	67.0	75.2	92.9	70.5	49.7		40.0 +	12:10 12:12 12:14 12:16 12:18 12:20 12:22 12:24
12:22	64.7	72.1	89.9	68.8	49.0		_	TIME OF DAY
12:23	65.8	75.9	101.0	70.7	48.9			Invalid Data Valid Data
12:24	67.3	74.3	94.6	71.3	54.6			Impact Threshold - Lmax

Site ∄ M- 4	Description: <u>)halr</u>	tamily	(CAIdential	······	
					Off Peak
Notes: hame vext	or started at	16.68		Date: Start Time: End Time: Meter ID:	8/Z1/14
				Roadway: Cars: MT: HT:	585
SITE SKETCH:			ιν 	ionitored Led.	
North Arrow		Site Speci	fics		· · · · ·
$\emptyset \longrightarrow$	Employee ID: BG	a:)			
Plan View		s. Not & (clear sky		
Arts Way Cross-Section	Res Gaugge Res Ariverman	(Rul) 7' M		Mess News O	/hadgriven/
	The P		H147	, RVA-	

TABLE A.14 Receptor M-14 15-Minute Equation TMS05: 2014-08-27 1210-1225					linute E 210-122	quivale 5 Hrs.	nt Sour	nd Level (15-min Leq) Calculation
	No	ise Measu	urement I	Data		Calcula	ted Data	Traffic Volume Nosie Level
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min	
	Leq					Leq	Leq	
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)	
12:10	59.8	74.3	96.4	63.2	49.6	59.8	58.5	59
12:11								Valid Data Histogram
12:12								Valu Data Histografii
12:13							^{80.0} T]
12:14								-
12:15	57.4	68.6	91.9	61.1	48.5	57.4	70.0	
12:16							3[A])	
12:17							P 60.0	
12:18							-min L	
12:19							50.0	
12:20	58.0	69.1	91.3	61.9	48.1	58.0		
12:21							40.0 +	12:10 12:12 12:14 12:16 12:18 12:20 12:22 12:24
12:22							_	TIME OF DAY
12:23								Invalid Data
12:24								Impact Threshold - Lmax
12:11 - 1-mii	n Leq despik	ed for Data c	ollected in 5-i	minute increm	nents.12:12 -	1-min Leq de	spiked for Da	ata collected in 5-minute increments.12:13 - 1-min Leq despiked fo

Site # N	
MONITO	
Notes:	Off Peal Date: 8/22/ Start Time: End Time: Meter ID: 36/25
	Roadway:
. <u></u>	Monitored Leq: 47.7
SITE SKE	TCH:
	Employee ID: S, Dri3co (1
Plan View	
	STEEP SLOVE PURSLEY GARAGE
	HUSSE
Cross-Sec	scorfz O G Pue
be	soft for the second sec
R / l	

.

÷ .

TABLE A.15Receptor M-15 15-Minute Equivalent Sound Level (15-min Leq) CalculationTMS05:2014-08-27 1210-1225 Hrs.								nd Level (15-min Leq) Calculation
Noise Measurement Data						Calcula	ted Data	Traffic Volume Nosie Level
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min	
	Leq					Leq	Leq	
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)	
12:10	45.4	47.8	74.2	46.5	44.0	46.6	47.7	48
12:11	44.7	47.5	71.7	45.8	43.4			Valid Data Histogram
12:12	46.5	49.6	78.1	48.4	44.2			Valid Data Histografii
12:13	47.7	57.3	80.8	50.0	44.5		^{80.0} T	
12:14	48.0	52.9	78.6	49.3	46.3			
12:15	52.2	60.2	79.3	56.2	46.2	48.9	70.0	
12:16	48.1	57.3	80.6	51.7	43.9		3[A])	· · · · · · · · · · · · · · · · · · ·
12:17	44.2	47.0	70.7	45.0	43.5		P 60.0	
12:18	48.6	56.2	79.8	52.1	44.6		-min L	
12:19	47.7	53.2	80.7	50.2	45.6		50.0	
12:20	46.0	50.3	75.7	48.1	43.5	47.3		ΠΠΙΙΙΙΙΙΠΠΙΙΠΠΙΙΙΙ
12:21	47.3	51.4	75.2	49.3	44.9		40.0 +	12:10 12:12 12:14 12:16 12:18 12:20 12:22 12:24
12:22	47.6	57.1	79.9	49.2	44.5		_	TIME OF DAY
12:23	47.6	56.5	78.5	50.9	44.3			Invalid Data
12:24	47.6	52.0	77.0	49.4	45.7			Impact Threshold - Lmax

ite # M- <u>i6</u>	Description: 1082 (SE147)
	FORMATION
	Off Peak
lotes: AUZ_	0516 Date: <u>8/27/2014</u>
	Start Time: <u>/2 ; ю</u> рм
	End Time: <u>/2:25 Ри</u>
	Boadway
	Cars:
	MT:
	HT:
	Monitored Leg: 58.4
ITE SKETCH:	
lorth Arrow	Site Specifics
\mathcal{X}	Employee ID:
	Atmospheric Conditions :
Plan View	
	SR 0147
	HOUSE HOUSE GARAGE SWING SET
ross-Section	

TABLE A.16Receptor M-16 15-Minute Equivalent Sound Level (15-min Leq) CalculationTMS05:2014-08-27 1210-1225 Hrs.								
Noise Measurement Data						Calculat	ted Data	Traffic Volume Nosie Level
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min	
	Leq					Leq	Leq	
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)	
12:10	57.0	66.3	87.3	61.9	41.2	57.1	58.4	58
12:11	54.9	63.4	82.4	58.9	43.2			Valid Data Histogram
12:12	56.7	66.2	86.5	61.9	47.5			Valid Data Histografii
12:13	58.4	66.0	85.9	62.0	50.3		^{80.0} T	
12:14	57.9	66.4	86.5	63.1	45.2			_
12:15	58.7	68.9	88.2	62.2	48.5	58.8	70.0	
12:16	61.2	68.9	93.9	64.8	54.3		3[A])	
12:17	51.8	61.6	83.2	55.4	42.9		90 60.0 -	
12:18	56.2	63.7	84.5	60.0	49.2		-min L	
12:19	60.8	67.4	92.8	64.3	55.2		50.0	
12:20	55.8	65.4	84.4	60.6	43.9	59.0		
12:21	59.0	67.7	92.2	62.3	45.0		40.0 +	12:10 12:12 12:14 12:16 12:18 12:20 12:22 12:24
12:22	57.9	66.5	86.4	63.0	42.4			TIME OF DAY
12:23	61.9	72.4	91.6	64.9	52.4			Invalid Data Valid Data
12:24	58.2	66.3	91.3	63.4	47.7			Impact Threshold - Lmax

S.R. 0015, Section 088 - Central Susquehanna Valle	ey Transportation Project
Site <u>M. 17</u> Description in Residen 14 Marty	
······································	
Notes: 145 Blossom Hill	Off Peak Date: 82714
	Start Time: <u>P:00 / / / / / / / / / / / / / / / / / / </u>
Inthe DN SK 141 Main Noise Savere	Meter ID: <u>84-2137</u>
trathe on Rulge Rd and DR.	
	Roadway: Cars:
	MT:
NITE SVETCH.	
North Arrow Site Specifics	
Employee ID: 36	
Atmospheric Conditions : $h_0 + d_1 = \int_{-\infty}^{\infty} d_1 d_2 d_2 d_3 d_4 d_4 d_4 d_4 d_4 d_4 d_4 d_4 d_4 d_4$	
Plan View	7
	1
27. 147	
	1. Contraction of the second s
They	
IR I	
	Slicson HIL
tg Other Kg Clea	
A-montor Gration Fred Color That a shed	
Cross-Section	
Agfield To Tan Ag tield	
- IKA	
	ski4]

TABLE A.17Receptor M-17 15-Minute Equivalent Sound Level (15-min Leq) Calculation - TMS06: 2014-08-27 1500-1515 Hrs.									
Noise Measurement Data						Calcula	ted Data	Traffic Volume Nosie Level	
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min		
	Leq					Leq	Leq		
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)		
15:00	43.5	51.6	77.2	46.3	40.5	42.5	42.4	42	
15:01	43.2	48.0	75.5	45.5	40.4			Valid Data Histogram	
15:02	42.5	46.7	72.4	44.1	40.9			Valu Data Histogram	
15:03	41.4	45.5	69.2	42.3	40.3		^{80.0} T		
15:04	41.5	45.7	69.7	42.5	40.5				
15:05	42.6	46.7	73.8	44.0	41.2	42.3	70.0		
15:06	41.5	45.8	73.7	43.4	39.9		3[A])		
15:07	42.4	45.4	71.7	43.6	40.7		P 60.0		
15:08	42.4	46.1	74.3	43.7	41.0		-min L	_	
15:09	42.3	47.7	75.2	43.8	40.6		50.0	• • • • • • •	
15:10	43.4	49.0	73.8	45.8	40.6	42.4			
15:11	42.7	49.7	76.5	44.4	40.5		40.0 +	15:00 15:02 15:04 15:06 15:08 15:10 15:12 15:14	
15:12	42.7	46.4	73.6	43.7	41.5			TIME OF DAY	
15:13	41.9	43.6	71.2	42.7	40.6			Invalid Data	
15:14	41.1	46.2	72.7	42.2	40.1			Impact Threshold - Lmax	
ntral Sushuahan va Valley Transportation Project 000 0 - -

	NEORMATION
	Off Peak
Notes: AU7	1 - 06 - 18 Date: <u>A-a</u> 27 Zol
	Start Time: 3
	Meter ID: 362592
	Roadway: Pidge
	Cars:
	HT:
	Monitored Leq: 48.3
North Arrow	Site Specifics
4	Employee ID: MM
	Atmospheric Conditions :
Plan View	
	Kigde Koac
4	4 Fence
L	
	Hause
	* Sat
	20Ft
	Shed
Cross-Section	
	2
<u></u>	
	\sim

TABLE	A.18	Recept TMS06	or M-18 : 2014-	3 15-N 08-27 1	linute E 500-151	quivale 5 Hrs.	nt Sour	nd Level (15-min Leq) Calculation
	No	ise Meası	Irement [Data		Calcula	ted Data	Traffic Volume Nosie Level
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min	
	Leq					Leq	Leq	
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)	
15:00	53.0	63.6	86.6	57.4	45.0	49.4	48.3	48
15:01	46.6	51.6	80.7	49.1	43.4			Valid Data Histogram
15:02	46.6	54.3	71.7	49.7	42.4			Valid Data Histografii
15:03	45.8	51.9	74.5	49.4	42.0		^{80.0} T]
15:04	50.1	55.3	80.0	53.7	43.5			
15:05	49.2	56.6	75.1	53.7	43.0	47.7	70.0	
15:06	46.2	53.1	72.3	48.7	42.2		3[A])	-
15:07	49.5	60.3	84.4	52.3	44.1		P 60.0	
15:08	45.6	50.4	73.0	48.1	42.2		-min L	 -
15:09	46.6	51.3	71.1	48.1	44.5		50.0	
15:10	50.9	58.4	81.5	54.3	46.2	47.5		
15:11	45.2	50.0	73.0	48.1	41.3		40.0 +	15:00 15:02 15:04 15:06 15:08 15:10 15:12 15:14
15:12	46.6	53.0	76.0	49.3	43.0		_	TIME OF DAY
15:13	47.7	53.4	73.7	50.8	43.3			Invalid Data Valid Data
15:14	43.4	47.9	69.7	45.3	41.3			Impact Threshold - Lmax

S.R. 001	5, Section 088	- Central	Susquehann	ia Valley	r Transportation Project
		Short-te	erm Noise Mon	itoring	
Site # 7M- /9	Description:	MCL	Pool J	504	Service 5

MONITORING INFORMATION

		Off Peak
Notes: $402 - 07 - 19$	Date:	Aug 27 2014
	Start Time:	-1
MCL Pool + Spa Services	End Time:	
R1 147	Meter ID: 🤇	862938
Northan the land the 17557		
	Roadway:	147
	Cars:	
	MT:	
	HT:	
	Monitored Lea:	604

SITE SKETCH:

TABLE	A.19	Recept TMS07	or M-19 : 2014-	9 15-N ∙08-27 1	linute E 610-162	quivale 5 Hrs.	nt Sour	nd Level (15-min Leq) Calculation
	No	ise Measu	irement [Data		Calcula	ted Data	Traffic Volume Nosie Level
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min	
	Leq					Leq	Leq	
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)	
16:10	58.5	64.5	86.9	60.7	55.4	60.4	60.4	60
16:11	59.1	63.9	83.9	62.0	54.6			Valid Data Histogram
16:12	61.7	69.6	89.5	66.0	51.7			Valid Data Histografii
16:13	62.9	68.0	87.6	65.4	58.8		^{80.0} T	
16:14	57.3	63.7	83.7	61.8	45.6			
16:15	58.9	65.3	86.4	62.9	52.5	59.1	70.0	
16:16	59.8	67.9	86.9	64.8	53.2		3[A])	
16:17	54.7	59.1	80.2	57.2	48.3		90 60.0 -	┍┍╢╢╾┍┍╶║╴╖╢┍┍╢
16:18	61.7	68.1	86.8	65.8	56.0		-min L	
16:19	57.4	62.2	83.3	59.3	55.1		÷ 50.0 ···	
16:20	60.6	66.4	86.7	64.1	51.7	61.3		
16:21	62.9	70.0	91.9	66.9	56.3		40.0 +	16:10 16:12 16:14 16:16 16:18 16:20 16:22 16:24
16:22	59.6	66.7	88.4	64.3	54.1		_	TIME OF DAY
16:23	59.0	63.7	84.4	62.2	54.5			Invalid Data Valid Data
16:24	62.9	69.1	90.2	66.1	55.5			Impact Threshold - Lmax

S.R. 0015	5, Section 088 - Central Susquehanna Valley Transportation Project Short-term Noise Monitoring
	Description. Mayway concertical (mater)
ONITORING IN Dtes:	IFORMATION Date: 9/27/2019 Start Time: End Time: Meter ID: 3629
	Roadway: Cars: MT: HT: Monitored Leq:
TE SKETCH:	
	Atmaanharia Canditiona
an View	Authosphene Conditions : SUMMy
	197
Oti	RCH HE OF
oss-Section	

...

1

Noise Measurement Data Calculated Data Traffic Volume Nosie Level TIME 1-min Lmax Lpk L(10.0) L(90.0) 5-min 15-min Traffic Volume Nosie Level dB(A) dB(A) dB(C) dB(A)	ation	und Level (15-min Leq) Calculation	nt Sour	quivale 5 Hrs.	linute E 500-151) 15-N 08-27 1	or M-2(: 2014-	Recept TMS06	A.20	TABLE
TIME 1-min Lmax Lpk L(10.0) L(90.0) 5-min 15-min Leq dB(A) dB(A) dB(C) dB(A) dB(A) dB(A) dB(A) dB(A) 15:00 56.7 66.2 82.0 59.7 50.5 56.1 56.7 57 15:01 56.8 65.3 81.2 59.2 50.7 56.7 56.7 57 15:02 57.0 66.8 82.5 60.4 49.4 56.6 56.7 Valid Data Histogram 15:04 56.0 62.9 85.0 59.1 48.6 6 60.6 60.6 60.6 60.6 60.6 70.0 <th>el</th> <th>a Traffic Volume Nosie Level</th> <th>ted Data</th> <th>Calcula</th> <th></th> <th>Data</th> <th>irement [</th> <th>ise Measu</th> <th>Noi</th> <th></th>	el	a Traffic Volume Nosie Level	ted Data	Calcula		Data	irement [ise Measu	Noi	
Leq Leq Leq Leq dB(A) dB(A) dB(C) dB(A) dB(A) <thd>dB(A) <thd>dB(A) dB(A)</thd></thd>		n	15-min	5-min	L(90.0)	L(10.0)	Lpk	Lmax	1-min	TIME
dB(A) dB(A) dB(A) dB(A) dB(A) dB(A) dB(A) dB(A) 15:00 56.7 66.2 82.0 59.7 50.5 56.1 56.7 57 15:01 56.8 65.3 81.2 59.2 50.7 56.1 56.7 57 15:02 57.0 66.8 82.5 60.4 49.4 48.6 49.4 49.5 49.5 49.5 4			Leq	Leq					Leq	
15:00 56.7 66.2 82.0 59.7 50.5 56.1 56.7 57 15:01 56.8 65.3 81.2 59.2 50.7 Valid Data Histogram 15:02 57.0 66.8 82.5 60.4 49.4 49.4 15:03 53.3 63.6 80.4 57.0 45.7 56.6 15:04 56.0 62.9 85.0 59.1 48.6 56.6 15:05 54.1 63.5 79.2 57.2 48.2 56.6 15:06 56.1 65.4 85.2 59.1 49.5 56.6 15:07 58.2 67.1 81.7 61.9 52.8 56.6 15:09 58.0 67.6 86.3 60.6 53.2 57.2 15:10 57.6 67.4 82.7 60.7 52.0 57.2 15:11 58.1 68.1 88.8 61.1 49.1 15:12 57.6 65.2 81.5 61.4 52.0 57.2 15:13 56.6 64.4)	dB(A)	dB(A)	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	
15:01 56.8 65.3 81.2 59.2 50.7 15:02 57.0 66.8 82.5 60.4 49.4 15:03 53.3 63.6 80.4 57.0 45.7 15:04 56.0 62.9 85.0 59.1 48.6 15:05 54.1 63.5 79.2 57.2 48.2 56.6 15:06 56.1 65.4 85.2 59.1 49.5 15:07 58.2 67.1 81.7 61.9 52.8 15:09 58.0 67.6 86.3 60.6 53.2 15:10 57.6 67.4 82.7 60.7 52.0 57.2 15:11 58.1 68.1 88.8 61.1 49.1 15:12 57.6 65.2 81.5 61.4 52.0 57.2 15:13 56.6 64.4 83.3 59.3 50.9 57.2 15:14 56.0 64.0 82.0 58.7 49.9		57	56.7	56.1	50.5	59.7	82.0	66.2	56.7	15:00
15:02 57.0 66.8 82.5 60.4 49.4 15:03 53.3 63.6 80.4 57.0 45.7 15:04 56.0 62.9 85.0 59.1 48.6 15:05 54.1 63.5 79.2 57.2 48.2 56.6 15:06 56.1 65.4 85.2 59.1 49.5 15:07 58.2 67.1 81.7 61.9 52.8 15:09 58.0 67.6 86.3 60.6 53.2 15:10 57.6 67.4 82.7 60.7 52.0 57.2 15:11 58.1 68.1 88.8 61.1 49.1 15:12 57.6 65.2 81.5 61.4 52.0 57.2 15:13 56.6 64.4 83.3 59.3 50.9 15.02 15.04 15.06 15.08 15.10 15.06 15.08 15.10 15.06 15.08 15.10 15.00 15.02 15.04 15.06 15.08 15.10 15.00 15.02 15.04 15.08		Valid Data Histogram			50.7	59.2	81.2	65.3	56.8	15:01
15:03 53.3 63.6 80.4 57.0 45.7 15:04 56.0 62.9 85.0 59.1 48.6 15:05 54.1 63.5 79.2 57.2 48.2 56.6 15:06 56.1 65.4 85.2 59.1 49.5 15:07 58.2 67.1 81.7 61.9 52.8 15:09 58.0 67.6 86.3 60.6 53.2 15:10 57.6 67.4 82.7 60.7 52.0 57.2 15:11 58.1 68.1 88.8 61.1 49.1 15:00		Valid Data Histograffi			49.4	60.4	82.5	66.8	57.0	15:02
15:04 56.0 62.9 85.0 59.1 48.6 15:05 54.1 63.5 79.2 57.2 48.2 56.6 15:06 56.1 65.4 85.2 59.1 49.5 15:07 58.2 67.1 81.7 61.9 52.8 15:09 58.0 67.6 86.3 60.6 53.2 15:10 57.6 67.4 82.7 60.7 52.0 57.2 15:11 58.1 68.1 88.8 61.1 49.1 15:00 15:06<		.0	^{80.0} T		45.7	57.0	80.4	63.6	53.3	15:03
15:05 54.1 63.5 79.2 57.2 48.2 56.6 15:06 56.1 65.4 85.2 59.1 49.5 15:07 58.2 67.1 81.7 61.9 52.8 15:09 58.0 67.6 86.3 60.6 53.2 15:10 57.6 67.4 82.7 60.7 52.0 57.2 15:11 58.1 68.1 88.8 61.1 49.1 15:12 57.6 65.2 81.5 61.4 52.0 57.2 15:13 56.6 64.4 83.3 59.3 50.9 15.09 15.06 15.06 15.06 15.06 15.00					48.6	59.1	85.0	62.9	56.0	15:04
15:06 56.1 65.4 85.2 59.1 49.5 15:07 58.2 67.1 81.7 61.9 52.8 15:08 55.0 64.0 82.4 57.8 50.2 15:09 58.0 67.6 86.3 60.6 53.2 15:10 57.6 67.4 82.7 60.7 52.0 57.2 15:11 58.1 68.1 88.8 61.1 49.1 15:12 57.6 65.2 81.5 61.4 52.0 15:13 56.6 64.4 83.3 59.3 50.9 15:14 56.0 64.0 82.0 58.7 49.9		.0	70.0	56.6	48.2	57.2	79.2	63.5	54.1	15:05
15:07 58.2 67.1 81.7 61.9 52.8 15:08 55.0 64.0 82.4 57.8 50.2 15:09 58.0 67.6 86.3 60.6 53.2 15:10 57.6 67.4 82.7 60.7 52.0 57.2 15:11 58.1 68.1 88.8 61.1 49.1 15:12 57.6 65.2 81.5 61.4 52.0 15:13 56.6 64.4 83.3 59.3 50.9 15:14 56.0 64.0 82.0 58.7 49.9			([V])		49.5	59.1	85.2	65.4	56.1	15:06
15:08 55.0 64.0 82.4 57.8 50.2 15:09 58.0 67.6 86.3 60.6 53.2 15:10 57.6 67.4 82.7 60.7 52.0 57.2 15:11 58.1 68.1 88.8 61.1 49.1 15:12 57.6 65.2 81.5 61.4 52.0 15:13 56.6 64.4 83.3 59.3 50.9 15:14 56.0 64.0 82.0 58.7 49.9			90) 60.0 -		52.8	61.9	81.7	67.1	58.2	15:07
15:09 58.0 67.6 86.3 60.6 53.2 15:10 57.6 67.4 82.7 60.7 52.0 57.2 15:11 58.1 68.1 88.8 61.1 49.1 15:12 57.6 65.2 81.5 61.4 52.0 15:13 56.6 64.4 83.3 59.3 50.9 15:14 56.0 64.0 82.0 58.7 49.9			'nin		50.2	57.8	82.4	64.0	55.0	15:08
15:10 57.6 67.4 82.7 60.7 52.0 57.2 15:11 58.1 68.1 88.8 61.1 49.1 15:12 57.6 65.2 81.5 61.4 52.0 15:13 56.6 64.4 83.3 59.3 50.9 15:14 56.0 64.0 82.0 58.7 49.9			÷ 50.0 -		53.2	60.6	86.3	67.6	58.0	15:09
15:11 58.1 68.1 88.8 61.1 49.1 15:12 57.6 65.2 81.5 61.4 52.0 15:13 56.6 64.4 83.3 59.3 50.9 15:14 56.0 64.0 82.0 58.7 49.9				57.2	52.0	60.7	82.7	67.4	57.6	15:10
15:12 57.6 65.2 81.5 61.4 52.0 TIME OF DAY 15:13 56.6 64.4 83.3 59.3 50.9 Invalid Data Valid Da 15:14 56.0 64.0 82.0 58.7 49.9 Impact Threshold - Lmax	15:12 15:14	.0 15:00 15:02 15:04 15:06 15:08 15:10 15:12	40.0 +		49.1	61.1	88.8	68.1	58.1	15:11
15:13 56.6 64.4 83.3 59.3 50.9 Impact Threshold Valid Data Valid Data Valid Data 15:14 56.0 64.0 82.0 58.7 49.9 Impact Threshold - Lmax		TIME OF DAY	_		52.0	61.4	81.5	65.2	57.6	15:12
15:14 56.0 64.0 82.0 58.7 49.9 Impact Threshold - Lmax	ata	Invalid Data Valid Data			50.9	59.3	83.3	64.4	56.6	15:13
		Impact Threshold - Lmax			49.9	58.7	82.0	64.0	56.0	15:14

Site # M- 24	Short-term Noise Monitoring Description:
01/2	
MONITORING IN	IFORMATION Off Beak
Notes:	Date: $\frac{3/2.7}{2014}$
6	Start Time:
	Meter ID: 3625aD
	<u> </u>
	Roadway:
	Cars:
	HT:
	Monitored Leq: 65,4
SITE SKETCH:	
North Arrow	Site Specifics
	Employee ID: Sriscoll
<u>Plan View</u>	
	(\circ)
	House
	Neter (
	X T TRU
	Side walk
	app (0)
Jem	5
Cross-Section	
	torse the
	✓
197	

TABLE	A.21	Recept TMS06	or M-21 : 2014-	l 15-N 08-27 1	linute E 500-151	quivale 5 Hrs.	nt Sour	nd Level (15-min Leq) Calculation
	No	ise Measu	urement I	Data		Calcula	ted Data	Traffic Volume Nosie Level
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min	
	Leq					Leq	Leq	
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)	
15:00	65.7	73.4	93.5	69.5	57.2	64.7	65.4	65
15:01	65.2	74.1	87.9	69.4	53.9			Valid Data Histogram
15:02	64.4	74.8	88.5	69.0	50.1			Valid Data Histografii
15:03	62.7	73.3	86.9	66.0	50.7		^{80.0} T	
15:04	64.9	72.1	89.6	68.1	57.6			
15:05	63.1	73.5	88.4	67.8	46.3	65.4	70.0	
15:06	66.3	73.4	91.4	70.6	51.0		3[A])	
15:07	66.2	75.6	92.1	70.7	55.2		90) 60.0 -	
15:08	61.6	67.4	83.4	65.5	47.1		-min L	
15:09	67.4	75.5	94.4	71.3	57.5		÷ 50.0 ···	
15:10	65.1	72.3	91.7	68.4	51.7	66.1		
15:11	67.7	77.0	95.6	71.5	58.7		40.0 +	15:00 15:02 15:04 15:06 15:08 15:10 15:12 15:14
15:12	66.1	72.4	88.2	69.9	51.3		_	TIME OF DAY
15:13	63.8	72.6	88.2	68.0	48.8			Invalid Data Valid Data
15:14	66.6	73.4	92.5	70.4	57.1			Impact Threshold - Lmax

te f12 M- 22 Description: Empty c=t off of A Ridy DNITORING INFORMATION Stes: 12 - 22 Vacant Let Date: Aug 25 201 Vacant Let Stat Time: Stat Time: Matter D: Matter D: Stat Time: Matter D: Matter D: Matter D:	S.R. 0015	5, Section 088 - Central Susquehanna Valle Short-term Noise Monitoring	ey Transportation Project
DNITORING INFORMATION Detes: 12-22 Dete: Aug 25 201 Start Time: D End Time: D	ite #12M- 22	Description: Empty cot off	of Ridge
ONITORING INFORMATION Dete: 12-22 Dete: Aug 25-201 Start Time:			<u> </u>
otes: 12-27 <u>Match Lat</u> <u>Match Lat</u> <u>Matc</u>	IONITORING IN	IFORMATION	
Start Time: 3 End	otes:	55-51	Off Peak Date: میں جھے کے ا
Vacant Let <u>Metrilo and Let</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affine</u> <u>Affi</u>			Start Time: J
DE 104 Roadway: <u>P:35e</u> <u>147</u> Cars: MT HT: HT HT: HT Monitored Leq: <u>54.1</u> TE SKETCH: TE SKETCH: Monitored Leq: Diff. Arrow Site Specifics Image: Sketch: Output: Minimum Image: Sketch: Output: Site Specifics Image: Sketch:	Vaca. Meta	R LEG Set up in centra	End Time: Meter ID: <u> </u>
Roadway: <u>Pibe 147</u> Cars: MT HT: Monitored Leq: <u>54.1</u> TE SKETCH: TTE SKETCH:		101,	
Cars: MT: HT: Monitored Leg: 54.1 TE SKETCH: TE SKETCH: TE SKETCH: Monitored Leg: 54.1 THE SKETCH: THE SKETCH: MONITORED LEG: 54.1 THE SKETCH: MONITORED LEG: 54.1 THE SKETCH: THE SKETCH: MONITORED LEG: 54.1 THE SKETCH: THE SKETCH: MONITORED LEG: 54.1 THE SKETCH: THE SKETCH: MONITORED LEG: 54.1 THE SKETCH: THE S			Roadway: Ridge 147
HT: Monitored Leg. 54.1 TE SKETCH: THE SKETCH: THE			Cars:
Desi-Section			HT:
TE SKETCH: Site Specifics Employee ID: Atmospheric Conditions : an View I UP Observed Observed Observed Imployee ID: MM Atmospheric Conditions : an View I UP Observed Observed Imployee ID: MM Atmospheric Conditions : an View I UP Imployee ID: Imployee I			Monitored Leq: 54.1
Site Specifics Employee ID: MM Atmospheric Conditions: an View IU O O O O O O O O O O O O O O O O O O	TE SKETCH:	·····	
Employee ID: 1/10 Atmospheric Conditions : an View 147 C D D D D D D D D D D D D D D D D D D D	orth Arrow	Site Specifics	
Atmospheric Conditions : an View 147		Employee ID: / / / / /	
an View 147		Atmospheric Conditions :	
Des-Section 147	an View	147	
P.dgr		Plus KS228	Ng Field
P.dgr	ross-Section		
P.dge			
P.dge		Ĩ.	147
		P.dge	

2

-

TABLE	A.22	Recept TMS12	or M-22 : 2014-	2 15-N 08-28 1	linute E 310-132	quivale 5 Hrs.	ent Sour	nd Level (15-min Leq) Calculation
	No	ise Meası	urement I	Data		Calcula	ted Data	Traffic Volume Nosie Level
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min	
	Leq					Leq	Leq	
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)	
13:10	55.0	66.0	83.1	58.3	48.1	52.6	54.1	54
13:11	50.8	57.0	77.8	55.0	46.4			Valid Data Histogram
13:12	52.3	59.8	78.1	55.9	47.6			Valu Data Histogram
13:13	50.8	58.7	77.1	54.4	47.3		^{80.0}]
13:14	52.7	63.4	79.8	55.7	48.1			
13:15	51.6	56.8	77.4	54.4	48.2	55.7	70.0	
13:16	57.6	70.7	91.2	59.9	47.5		3[A])	
13:17	56.6	68.2	88.7	58.5	47.8		P 60.0	
13:18	57.3	66.8	88.5	63.3	48.4		-min L	
13:19	51.2	62.8	75.7	54.3	47.9		50.0	
13:20	52.3	62.3	77.7	56.7	48.3	53.4		
13:21	55.2	64.8	83.2	59.5	47.3		40.0 +	13:10 13:12 13:14 13:16 13:18 13:20 13:22 13:24
13:22	55.8	62.4	83.2	60.7	48.1		_	TIME OF DAY
13:23	51.7	61.5	79.8	55.2	47.2			Invalid Data Valid Data
13:24	47.4	50.6	70.5	48.2	46.5			Impact Threshold - Lmax

				Off Peak
Notes:	····		Date: _ Start Time:	8/18
			End Time:	
			Meter ID:	8679
,			Roadway:	
<u> </u>			Cars: _ 	<u> </u>
	· · · · · · · · · · · · · · · · · · ·		HT:	
			Monitored Leq:	52.4
SITE SKETCH:		- 0	· · · · · · · · · · · · · · · · · · ·	
North Arrow				
	Atmospheric Conditions :	Davany	Chrider	
Plan View				
~ 0				
$\langle \phi \rangle ()$	ý TIN		2	I. ED
			SN.	HOUN
	200-	<u> </u>		
6			Last	
\square		M		Cual
\sim			1 North	Garage
R				
	veren			}
$\land Q$	、 、			
(0)				(
Q	(\mathfrak{S})		\int	
(\mathbf{J})				\subseteq
Cross-Section				1
				4)
	Ν			//
	A .			

TABLE	TABLE A.23 Receptor M-23 15-Minute TMS13: 2014-08-28 1345-14						nt Sour	nd Level (15-min Leq) Calculation
	Noise Measurement Data					Calculated Data		Traffic Volume Nosie Level
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min	
	Leq					Leq	Leq	
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)	
13:45	46.8	52.6	74.2	49.7	43.9	47.3	52.4	52
13:46	46.4	53.6	78.0	47.8	44.3			Valid Data Histogram
13:47	47.5	53.9	70.3	49.5	44.3			Valid Data Histografii
13:48	47.2	51.7	69.8	49.2	44.8		^{80.0} T	
13:49	48.4	51.5	76.0	50.4	45.6			
13:50	58.2	67.6	85.8	64.3	47.3	53.4	70.0	
13:51	52.4	59.3	82.7	57.1	46.0		3[A])	
13:52	49.2	55.0	82.7	52.3	46.1		10 60.0 -	
13:53	50.1	60.3	81.4	54.8	45.3		min L	
13:54	48.3	58.5	82.3	49.9	45.4		÷ 50.0 -	
13:55	44.4	47.7	69.4	45.1	43.7	54.0		
13:56	50.2	57.0	77.9	54.5	45.1		40.0 +	13:45 13:47 13:49 13:51 13:53 13:55 13:57 13:59
13:57	51.1	58.6	81.3	54.4	45.1		_	TIME OF DAY
13:58	59.8	69.7	94.0	66.3	44.0			Invalid Data Valid Data
13:59	44.5	45.9	68.7	45.3	44.0			Impact Threshold - Lmax

MONITORING INI	FORMATION			
(01 01		ç	Off Peak
Notes:	<u>Idae Fa</u>	· ·	Date: $g/$	7a / 14
	V		End Time: /	25
			Meter ID: 80	5.29 3. F
	· · · · · · · · · · · · · · · · · · ·		ה	
			Roadway: <u>Ka</u>	ge Kd Nest
			. Cars:	N N
	· · ·	· · ·	НТ:	5
			Monitored Leq:	54.2 Bi
SITE SKETCH:				
North Arrow	Site	Specifics	····	
	Employee ID:			
N/	Atmospheric Conditions : 1	PI)	
Plan View		E MATTY () da	1	
		ł	1	
				(
	Pill Pd			
emp	MIL S	3		
Mix Malwre	E T			
Vole State Tree	3. 5. 12) - 1)	Suxhan II	, A	
(maintained	the forest		1	R
	$\langle \rangle \rangle$			4
& grass				F-1
~				V
Mature	Frest			
v-1∘ • €				
Cross-Section				
1				
	· _			-

TABLE	A.24	Recept TMS12	or M-24 : 2014-	4 15-№ ∙08-28 13	linute E 310-132	quivale 5 Hrs.	nt Sour	nd Level (15-min Leq) Calculation
	No	ise Meası	Irement I	Data		Calculated Data		Traffic Volume Nosie Level
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min	
	Leq					Leq	Leq	
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)	
13:10	54.8	61.5	84.4	59.5	48.5	52.9	54.2	54
13:11	52.0	58.3	81.2	55.5	48.4			Valid Data Histogram
13:12	52.8	59.4	75.8	55.7	48.5			Valid Data Histografii
13:13	52.9	59.8	82.5	57.2	48.4		^{80.0} T	
13:14	51.4	58.1	75.5	54.1	47.8			
13:15	52.3	57.1	80.8	55.2	47.9	55.5	70.0	
13:16	50.2	60.4	78.7	53.6	46.0		3[A])	
13:17	58.7	69.5	90.7	64.7	46.2		90 60.0 -	
13:18	57.9	67.8	90.1	62.6	46.7		-inin L	
13:19	50.9	56.5	75.4	54.5	46.7		÷ 50.0 ···	
13:20	52.9	62.0	79.9	56.7	47.6	53.9		
13:21	52.0	60.7	78.6	54.6	47.5		40.0 +	13:10 13:12 13:14 13:16 13:18 13:20 13:22 13:24
13:22	58.6	69.6	90.4	62.6	47.0		_	TIME OF DAY
13:23	49.4	57.7	76.0	52.1	46.3			Invalid Data Valid Data
13:24	48.6	57.5	75.7	49.5	46.7			Impact Threshold - Lmax

S.R. 0015, Site # <u>3 M-25</u>	Section 088 - Central Susquehanna Valley Transportation Project Short-term Noise Monitoring Description: Simple Residenting	
MONITORING INF	ORMATION Off Peak 77 Ridue Rd Date: C/21/14 Start Time: 1/45 End Time: 2100 Meter ID: Size 29 38	
	Roadway: Rod Ro Cars: EB, 9 WB:13 MT: EB; 1 WB:1 HT: EB:3 WB:4 Monitored Leq: 53,4	Moto Brs:
SITE SKETCH:	Site Specifics	
N	Employee ID: 86	
V	Atmospheric Conditions : hat & latter Atmospheric Conditions : hat	
Plan View	nu y narly llovay	
	Por	
<u></u>		
`	Kidye RA	
	This Res	
atim	Tramphin & Patio Retaining well	
Vall	Paol Eamit	
Figh	Rool To Ros	
3	retrining wall RJ. ZI	

TABLE	TABLE A.25 Receptor M-25 15-Minute TMS13: 2014-08-28 1345-14						ent Sour	nd Level (15-min Leq) Calculation
	Noise Measurement Data					Calculated Data		Traffic Volume Nosie Level
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min	
	Leq					Leq	Leq	
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)	
13:45	47.2	54.3	79.0	51.3	41.6	46.6	53.4	53
13:46	44.8	50.7	74.7	48.9	40.5			Valid Data Histogram
13:47	45.3	52.9	72.2	48.1	42.4			Valid Data Histografii
13:48	46.1	52.0	71.7	49.6	43.0		^{80.0} T	
13:49	48.5	53.1	73.9	51.7	43.2			_
13:50	60.7	73.0	91.1	65.1	46.4	55.4	70.0	
13:51	54.5	64.8	81.1	58.0	47.7		3[A])	<u>-</u>
13:52	46.9	50.4	85.9	49.1	45.2		P 60.0	
13:53	47.2	54.0	74.0	50.3	42.3		-min L	
13:54	52.7	63.5	86.1	55.7	43.8		50.0	
13:55	43.7	48.4	67.3	47.1	41.4	54.3		
13:56	53.0	62.4	84.2	57.1	43.4		40.0 +	13:45 13:47 13:49 13:51 13:53 13:55 13:57 13:59
13:57	53.1	60.9	83.0	57.8	43.0			TIME OF DAY
13:58	59.5	70.5	90.8	64.3	43.7			Invalid Data
13:59	43.3	46.6	75.1	43.9	42.2			Impact Threshold - Lmax

MONITORING IN	FORMATION
Notes: AJ	Z I3_Z Date: Aug Z & Z Start Time: End Time: Meter ID: Z67 597
	Roadway: <u>)</u> ソフ Cars: MT: HT:
	Monitored Leq: 46.7
North Arrow	Site Specifics
	Atmospheric Conditions :
<u>Plan View</u>	· · · · · · · · · · · · · · · · · · ·
	Devening & Pation Moek wood
Cross-Section	

TABLE	TABLE A.26 Receptor M-26 15-Minute TMS13: 2014-08-28 1345-14						nt Sour	nd Level (15-min Leq) Calculation
	Noise Measurement Data					Calculated Data		Traffic Volume Nosie Level
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min	
	Leq					Leq	Leq	
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)	
13:45	43.1	46.4	66.1	45.1	41.5	45.2	46.7	47
13:46	46.0	49.4	65.6	47.3	43.1			Valid Data Histogram
13:47	44.8	47.4	63.9	46.3	42.8			Valid Data Histografii
13:48	45.5	49.9	69.5	46.4	43.7		^{80.0} T	
13:49	46.0	50.8	69.5	47.0	44.9			
13:50	49.7	53.3	74.2	52.3	46.4	47.0	70.0	
13:51	47.4	50.2	72.9	49.6	45.7		3[A])	
13:52	45.5	48.6	67.1	46.3	44.5		10 60.0 -	
13:53	44.3	45.5	67.9	44.9	43.5		-inin L	
13:54	45.9	48.6	68.2	47.5	44.4		← 50.0 -	· [_] _ _ _ · <u>·</u> _ <u>·</u> _ / /
13:55	44.9	46.9	80.5	46.2	43.3	47.7		
13:56	46.3	49.3	70.0	48.3	44.5		40.0 +	13:45 13:47 13:49 13:51 13:53 13:55 13:57 13:59
13:57	46.2	50.4	69.4	48.7	44.4		_	TIME OF DAY
13:58	50.6	52.3	75.8	51.4	49.7			Invalid Data
13:59	47.9	49.1	73.5	48.5	47.4			Impact Threshold - Lmax

.

TABLE	TABLE A.29 Receptor M-29 15-Minute I TMS07: 2014-08-27 1610-162					quivale 5 Hrs.	nt Sour	nd Level (15-min Leq) Calculation
	Noise Measurement Data					Calculated Data		Traffic Volume Nosie Level
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min	
	Leq					Leq	Leq	
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)	
16:10	46.6	49.0	77.9	47.4	45.6	47.6	48.2	48
16:11	47.7	52.0	74.9	49.3	45.1			Valid Data Histogram
16:12	48.9	51.3	75.2	49.7	48.0			Valid Data Histografii
16:13	48.2	50.6	75.8	49.7	46.7		^{80.0} T	
16:14	46.0	48.1	73.7	47.1	45.1			
16:15	48.1	51.4	74.9	49.5	46.4	48.3	70.0	
16:16	49.0	51.9	77.7	50.3	46.9		([V])	
16:17	48.2	50.6	75.2	49.2	47.2		90) 60.0 -	
16:18	48.7	51.0	76.4	50.1	46.9		-min L	
16:19	47.0	51.0	76.0	47.7	46.2		÷ 50.0 -	
16:20	48.8	54.3	76.3	50.1	47.4	48.8		
16:21	48.3	50.5	77.0	49.3	47.4		40.0 +	16:10 16:12 16:14 16:16 16:18 16:20 16:22 16:24
16:22	48.3	50.4	77.0	49.2	47.3		_	TIME OF DAY
16:23	49.5	51.5	77.1	50.2	48.6			Invalid Data Valid Data
16:24	48.8	51.9	78.2	50.0	46.9			Impact Threshold - Lmax

Short-term Noise Monitoring

TABLE	TABLE A.30 Receptor M-30 15-Minute TMS07: 2014-08-27 1610-16						nt Sour	nd Level (15-min Leq) Calculation
	No	ise Meası	Irement [Data		Calculated Data		Traffic Volume Nosie Level
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min	
	Leq					Leq	Leq	
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)	
16:10	57.9	66.5	88.4	59.4	53.6	57.3	57.3	57
16:11	58.1	64.0	85.0	60.7	51.9			Valid Data Histogram
16:12	58.2	62.0	85.5	60.5	55.7			Valid Data Histogram
16:13	56.2	62.5	83.0	58.8	51.5		^{80.0} T	
16:14	55.4	60.6	83.6	58.4	50.2			
16:15	59.5	71.1	92.8	62.2	52.9	56.7	70.0	-
16:16	55.2	61.9	82.6	58.3	51.2		a[A])	
16:17	55.5	60.1	79.8	57.7	51.5		P 60.0	
16:18	54.1	60.3	76.6	56.4	49.7		-min L	
16:19	57.1	64.4	83.5	60.2	52.4		50.0	
16:20	57.2	63.7	87.1	60.0	54.4	57.9		
16:21	56.9	65.1	82.6	59.6	53.0		40.0 +	16:10 16:12 16:14 16:16 16:18 16:20 16:22 16:24
16:22	57.3	63.1	85.3	59.5	53.0			TIME OF DAY
16:23	57.9	68.0	90.7	61.2	51.7			Invalid Data Valid Data
16:24	59.7	65.7	89.9	63.9	54.2			Impact Threshold - Lmax

	EORMATION	
		Off Peak
Notes:		Date: <u>\$\?7//y</u>
		End Time:
		Meter ID: 86293 1
		Roadway:
· · · · · · · · ·		MT:
		Monitored Leq: 54.2
SITE SKETCH:	Site Specifics	
North Anow		· · · · · · · · · · · · · · · · · · ·
Plan View	Autosphene conditions . Not & clan	s Ky
	losa Field	
	H 147	I and the second s
Remaining Res		quemas
S Alliton	X X	Pool
Cross-Section	Rt. 147	Con Field

		TMS07	: 2014-	08-27 1	610-162	5 Hrs.		
	Noi	ise Measu	irement [Data		Calculated Data		Traffic Volume Nosie Level
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min	
	Leq					Leq	Leq	
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)	
16:10	56.0	67.1	89.8	59.1	50.5	54.4	54.2	54
16:11	54.4	59.3	81.6	56.7	51.2			Valid Data Histogram
16:12	54.7	59.3	80.0	56.9	51.0			Valid Data Histografii
16:13	51.5	55.8	78.1	53.9	47.2		^{80.0} T	
16:14	54.3	62.2	88.3	58.7	48.3			
16:15	53.1	60.2	85.3	56.0	48.8	53.4	70.0	_
16:16	52.9	59.2	80.2	57.0	45.3		3[A])	
16:17	52.5	60.6	83.6	56.7	46 .1		P) 60.0	
16:18	51.5	54.8	79.2	53.4	47.2		-min L	
16:19	55.8	63.8	85.8	60.2	50.2		50.0	
16:20	54.6	60.7	85.9	58.5	47.6	54.6		
16:21	53.3	62.8	82.9	55.9	47.0		40.0 +	16:10 16:12 16:14 16:16 16:18 16:20 16:22 16:24
16:22	54.3	60.5	81.9	57.8	47.8		_	TIME OF DAY
16:23	55.4	62.4	83.5	60.1	47.0			Invalid Data
16:24	55.1	61.5	83.4	58.3	50.3			Impact Threshold - Lmax

S.R. 0015, Section	088 - Central Susquehanna Valley Transportation Project	;t
2-	Short-term Noise Monitoring	

Site #/ M- 37	Description: Oak	Vicw	<u></u>
MONITORING	INFORMATION		
Notes:	AUZ_11_32	Date: Start Time:	Off Peak Ars 28 2014
<u> </u>	opepty Slopes to the South	End Time: Meter ID:	«62937
ρος	Breted unkil I walked awa	Ping	
1	5 min session.	Roadway: Cars:	·····
		М1: НТ:	
		Monitored Leq:	50.1

SITE SKETCH:

TABLE	A.32	Recept TMS11	or M-32 : 2014-	2 15-№ ∙08-28 1:	linute E 215-123	quivale 0 Hrs.	nt Soui	nd Level (15-min Leq) Calculation
	No	ise Meası	Irement I	Data		Calcula	ted Data	Traffic Volume Nosie Level
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min	
	Leq					Leq	Leq	
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)	
12:15	52.0	64.7	77.7	54.7	47.2	52.7	50.1	50
12:16	47.1	51.9	75.3	48.9	45.4			Valid Data Histogram
12:17	56.5	66.9	81.3	61.4	46.4			Valid Data Histografii
12:18	53.0	65.5	85.3	55.4	48.7		^{80.0} T	
12:19	49.2	54.3	82.7	52.0	44.9			
12:20	45.2	55.9	74.0	48.0	40.9	46.8	70.0	
12:21	44.5	48.9	69.8	46.2	41.3		3[A])	
12:22	46.6	51.4	75.0	48.9	42.8		P 60.0	
12:23	50.1	58.6	75.1	53.2	43.7		min L	
12:24	45.0	48.9	73.3	46.7	43.0		50.0	
12:25	47.6	57.1	75.4	51.3	41.8	48.7		
12:26	48.7	57.8	73.3	54.9	42.3		40.0 +	12:15 12:17 12:19 12:21 12:23 12:25 12:27 12:29
12:27	50.0	62.2	80.1	55.2	41.7		_	TIME OF DAY
12:28	48.5	55.1	80.6	50.0	43.3			Invalid Data Valid Data
12:29	48.1	50.2	73.2	49.0	47.4			Impact Threshold - Lmax

S.R. 0015 <u>Site ∦ M- <i>8</i>3</u>	Section 088 - Central Susquehanna Valley Short-term Noise Monitoring Description: Single Amily Contract	Transportation Project
IONITORING IN lotes: 126d	FORMATION Waterfall audible	Off Peak Date: 8 29/19 Start Time: 7 End Time: 7 Meter ID: 80/29/3K
		Roadway: Cars: MT: HT: Monitored Leg:
TE SKETCH:		
orth Arrow	Site Specifics	
$\downarrow \longrightarrow$		
	Atmospheric Conditions: Narm & narth	y claudy
<u>in View</u>		
	Re F Isto Bond -O	Garage
	$\Box p$	CH. 147

TABLE	A.33	Recept TMS11	or M-33 : 2014-	3 15-№ ∙08-28 1:	linute E 215-123	quivale 0 Hrs.	nt Sour	nd Level (15-min Leq) Calculation
	No	ise Meası	Irement I	Data		Calcula	ted Data	Traffic Volume Nosie Level
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min	
	Leq					Leq	Leq	
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)	
12:15	51.0	52.9	77.0	52.2	49.3	48.8	49.0	49
12:16	48.3	51.8	72.8	49.9	46.9			Valid Data Histogram
12:17	48.4	50.5	71.6	49.2	47.3			Valid Data Histografii
12:18	47.9	54.1	80.9	48.5	47.1		^{80.0} T	
12:19	47.7	49.8	69.4	48.5	47.1			
12:20	48.7	52.8	72.1	50.3	47.2	49.4	70.0	
12:21	50.4	55.8	76.2	51.6	48.7		([V])	
12:22	50.3	55.8	83.0	54.4	47.0		P 60.0	
12:23	49.2	53.5	70.7	52.2	47.1		-min L	
12:24	47.6	49.9	70.3	48.3	46.8		÷ 50.0 -	
12:25	48.9	51.4	79.2	50.3	47.5	48.6		
12:26	47.5	50.7	66.5	48.5	46.6		40.0 +	12:15 12:17 12:19 12:21 12:23 12:25 12:27 12:29
12:27	47.5	51.2	69.2	48.7	46.4		_	TIME OF DAY
12:28	47.6	49.4	69.5	48.8	46.3			Invalid Data Valid Data
12:29	50.7	53.7	72.0	53.1	47.7			Impact Threshold - Lmax

Short-term Noise Monitoring | <u>Site</u> # **Description:** M-**MONITORING INFORMATION Off Peak** 8/26/2014 Date: Notes: Start Time: End Time: Meter ID: 362597 Roadway: Cars: MT: HT: Monitored Leq: 51.2 SITE SKETCH: North Arrow Site Specifics Employee ID: (13Coll Judy Atmospheric Conditions : 41,3 (} V Loau <u> Plan View</u> (47 Sto firepij 90 Tieser 9 2/01 Serving) tag 70 Cross-Section bury A. 39 ³⁴

TABLE	A.34	Recept TMS11	or M-34 : 2014-	4 15-№ ∙08-28 12	linute E 215-123	iquivale 60 Hrs.	nt Sour	nd Level (15-min Leq) Calculation
	No	ise Measu	Irement [Data		Calcula	ted Data	Traffic Volume Nosie Level
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min	
	Leq					Leq	Leq	
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)	
12:15	52.0	54.8	77.0	53.3	50.1	51.9	51.2	51
12:16	48.7	54.8	74.4	50.5	45.8			Valid Data Histogram
12:17	52.4	57.9	84.0	55.1	49.1			Valid Data Histogram
12:18	54.3	60.2	85.1	56.9	50.3		^{80.0} T	
12:19	50.3	55.3	75.9	52.8	47.1			
12:20	48.8	55.1	74.2	51.3	46.0	50.8	70.0	
12:21	48.8	52.5	74.5	50.8	46.6		3[A])	
12:22	52.1	58.7	75.9	54.5	48.5		면 60.0	
12:23	52.6	59.7	79.7	57.3	47.3		-min L	
12:24	50.3	56.6	76.2	53.2	46.4		50.0	
12:25	49.8	53.7	73.7	51.7	45.3	50.7		
12:26	48.2	53.3	75.3	50.7	44.9		40.0 +	12:15 12:17 12:19 12:21 12:23 12:25 12:27 12:29
12:27	51.6	59.3	78.2	55.2	46.4			TIME OF DAY
12:28	51.8	56.1	78.8	53.4	49.2			Invalid Data Valid Data
12:29	51.2	57.7	76.7	53.7	49.1			Impact Threshold - Lmax

S.R. 0015	5, Section 088 - Central Susquehanna Valley Transportation Project
Site #0 <u>M-35</u> ∕	Description: Sim/s Family Periden 10
	IFORMATION
	on () / Off Peak
Notes://	19 Lyan Lang Date: 5/20/14
	Start Time:
	End Time:
	Meter ID: <u>367938</u>
	Roadway:
	Maniford Long Ello
	Monitorea Leq: 58.0
SITE SKETCH:	044 044 1044
North Arrow	Site Specifics
$N \longrightarrow$	Employee ID: 56
	Atmospheric Conditions: Warm & Partly Ludy
<u>Plan View</u>	Pt. 14t
	lites Shalos
	Ryan Lane
All -	
	Prol
	Lee 1
L	TO DECK
/Da	k = 0
	(GARED) -4-+ tre stimes
	A B market and the second seco
	0'
Cross-Section	
	TO IN
	led Pd
	<u>kt·14</u>

TABLE	A.35	Recept TMS10	or M-35 : 2014-	5 15-N 08-28 1	linute E 125-114	quivale 0 Hrs.	nt Sour	nd Level (15-min Leq) Calculation
	No	ise Meası	Irement I	Data		Calcula	ted Data	Traffic Volume Nosie Level
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min	
	Leq					Leq	Leq	
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)	
11:25	57.1	63.4	85.4	60.4	53.1	56.8	58.0	58
11:26	56.0	62.8	96.8	58.0	53.9			Valid Data Histogram
11:27	53.1	58.5	90.1	56.0	50.1			Valid Data Histogram
11:28	58.0	65.0	92.2	61.9	52.9		^{80.0} T	
11:29	58.0	64.8	98.2	61.9	51.5			-
11:30	59.4	68.6	87.8	62.2	54.4	58.1	70.0	-
11:31	56.5	64.1	81.6	59.9	51.6		a[A])	
11:32	59.2	73.1	84.6	61.6	52.2		P 60.0	
11:33	57.5	63.7	92.2	60.6	50.0		-min L	
11:34	57.2	63.6	84.3	59.8	51.4		50.0	
11:35	58.7	63.7	84.0	61.4	52.4	58.8		
11:36	54.7	61.6	82.0	57.6	49.4		40.0 +	11:25 11:27 11:29 11:31 11:33 11:35 11:37 11:39
11:37	61.2	67.2	87.1	64.2	57.3		_	TIME OF DAY
11:38	60.5	64.1	84.1	62.6	57.3			Invalid Data Valid Data
11:39	55.0	63.4	82.9	58.3	51.6			Impact Threshold - Lmax

S.R. 0015, Section 088 - Central Susquehanna Valley Transportation Project
Chart form Naise Menifering

-		Short-term Noise Wontoring	
<u>Site #10M-36</u>	Description:	Ryan food	

MONITORING INFORMATION

Notes: AU	2_10_36	Date:	Off Peak Arg 28 2014
	perty Appears to So ow. By camp ground.	Start Time: End Time: Meter ID:	362592
		Roadway: Cars: MT: HT:	
		Monitored Leq:	62.3
North Arrow	Site Specifics		
1	Employee ID: MM		

TABLE	A.36	Recept TMS10	or M-36 : 2014-	6 15-№ ∙08-28 1	linute E 125-114	quivale 0 Hrs.	nt Sour	nd Level (15-min Leq) Calculation
	No	ise Meası	urement I	Data		Calcula	ted Data	Traffic Volume Nosie Level
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min	
	Leq					Leq	Leq	
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)	
11:25	62.6	70.8	89.5	68.2	54.6	61.8	62.3	62
11:26	60.6	67.2	85.7	63.4	55.9			Valid Data Histogram
11:27	59.8	70.0	88.8	66.1	48.0			Valid Data Histogram
11:28	62.1	69.8	89.0	67.0	54.8		^{80.0} T	
11:29	63.0	70.5	91.6	67.3	53.4			
11:30	63.4	68.9	93.9	67.0	56.2	61.8	70.0	
11:31	56.9	62.3	82.0	59.9	51.0		a[A])	
11:32	64.0	71.6	86.9	67.2	57.0		P 60.0	╵┼┍┑╼┑╎┼╎┼╎┝═┑╎╞╗╌┥┝╗╴╎┼╎┝╼╵╵
11:33	57.1	63.7	83.7	61.0	47.9		-min L	
11:34	62.8	67.7	88.2	65.5	59.0		50.0	
11:35	61.8	67.3	89.9	65.7	53.8	63.1		
11:36	61.1	67.7	86.2	64.5	51.9		40.0 +	11:25 11:27 11:29 11:31 11:33 11:35 11:37 11:39
11:37	65.4	71.8	91.5	68.0	60.1		_	TIME OF DAY
11:38	64.9	70.2	90.3	67.1	60.8			Invalid Data Valid Data
11:39	59.6	69.9	86.4	61.6	52.6			Impact Threshold - Lmax

A '' '		onicornig
Site 7 M-	Description:	
351	··········	
MONITORING I	NFORMATION	
		Off Peak (
Notes:		Date: <u>0/26/(</u> 0
	#5	Start Time:
		End Time: Meter ID: 3675 91
		Roadway Cars:
		MT:
		HT:
		Monitored Leq: 58.4
SITE SKETCH		
North Arrow	Site Specific	S
	Employee ID:	
		Â
	Atmospheric Conditions :	
Plan View	Kong-147	
(n)		
Contraction of Call and Call		
	X	retu
	A de la de	retu
		rett
	X	retu
	X A A A A A A A A A A A A A A A A A A A	retu
Cross-Section	X X X X X	Net Contraction of the second se
Cross-Section	X	retu
Cross-Section	X X X X X X	retu
Cross-Section	X	Nett States of the second seco
Cross-Section	X X X X Ever 1	retu
Cross-Section	And and a second	retu
Cross-Section	X	retu ine

TABLE	A.37	Receptor M-37 15-Minute Equivalent Sound Level (15-min Leq) Calculation TMS11: 2014-08-28 1215-1230 Hrs.						
Noise Measurement Data						Calculated Data		Traffic Volume Nosie Level
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min	
	Leq					Leq	Leq	
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)	
12:15	57.9	61.2	82.5	59.8	55.5	58.2	58.4	58
12:16	56.0	59.7	82.9	57.7	54.5			Valid Data Histogram
12:17	59.2	63.9	88.2	61.2	56.7			Valid Data Histografii
12:18	59.5	64.6	89.1	61.8	56.2		^{80.0} T	
12:19	57.7	61.7	83.9	59.4	55.5			
12:20	56.5	59.5	83.1	57.6	55.5	58.7	70.0	-
12:21	56.9	59.2	81.1	58.0	55.7		3[A])	
12:22	58.8	62.9	82.9	61.0	56.2		P 60.0	
12:23	61.1	68.4	89.4	64.9	56.7		-min L	
12:24	58.5	64.8	83.7	62.3	55.5		50.0	
12:25	57.4	59.8	81.9	58.8	56.0	58.1		
12:26	56.9	59.5	82.2	58.2	55.7		40.0 +	l2:15 12:17 12:19 12:21 12:23 12:25 12:27 12:29
12:27	58.0	65.0	86.5	61.3	55.0		_	TIME OF DAY
12:28	59.1	63.4	85.0	60.4	57.4			Invalid Data Valid Data
12:29	58.9	62.5	83.5	60.8	57.0			Impact Threshold - Lmax
				Off Peak				
--------------------	---------------------------------------	----------------	--------------------------	----------				
Notes:			Date:	A76/201				
			Start Time: End Time:					
			Meter ID:	367590				
		· · · · ·	·····					
			Roadway:					
			MT:	·				
			HT:					
			Monitored Leq:	60.3				
SITE SKETCH:		to One differe		····				
North Arrow			<u></u>					
		Drixcoll						
	Atmospheric Conditions :	Partly	(loxly					
e one	A A A A A A A A A A A A A A A A A A A	Jul Co		Dunnut				
2ross-Section V	the with the							

TABLE	TABLE A.38Receptor M-38 15-Minute Equivalent Sound Level (15-min Leq) CalculationTMS10:2014-08-28 1125-1140 Hrs.										
Noise Measurement Data							ted Data	Traffic Volume Nosie Level			
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min				
	Leq					Leq	Leq				
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)				
11:25	61.4	66.9	89.2	64.5	56.4	60.1	60.3	60			
11:26	58.5	63.7	87.4	61.9	54.5			Valid Data Histogram			
11:27	58.6	66.2	85.7	63.7	51.6			Valid Data Histogram			
11:28	60.1	65.2	89.4	63.3	55.4		^{80.0} T				
11:29	61.2	68.7	92.0	65.7	53.4						
11:30	61.3	67.4	90.2	65.3	54.7	59.8	70.0				
11:31	57.1	59.5	79.9	58.6	55.0		3[A])				
11:32	61.6	67.7	89.9	65.1	58.2		말) 60.0 - 명	<u>∩~~∩∩∩<u>-</u>∩<u>-</u>∩∩,∥∏_~∣</u>			
11:33	57.0	61.0	86.0	59.7	53.1		-inin L				
11:34	59.9	66.7	88.6	62.1	55.5		€ 50.0 -				
11:35	60.4	67.9	91.6	64.9	53.2	60.9					
11:36	59.7	65.7	88.0	63.4	55.8		40.0 +	11:25 11:27 11:29 11:31 11:33 11:35 11:37 11:39			
11:37	62.4	68.8	88.3	64.8	58.2		_	TIME OF DAY			
11:38	62.2	65.5	86.9	64.4	57.9			Invalid Data Valid Data			
11:39	58.3	67.6	86.2	62.3	52.4			Impact Threshold - Lmax			

Valley Transportation Project 10 C 000

Site # M- ⁷ 34	Short-term Noise Monitoring	
	NFORMATION	
Notes:	Off Peal Date: 8/26/2	k 2014
	Start Time:	
	End Time: Meter ID: <u>3 (o</u> 25	92
	Boadway	
	Koadway Cars:	
	MT:	
	Monitored Leq: 54.9	
SITE SKETCH:		
North Arrow	Site Specifics	
	Employee ID: SDn's Loll	
	Atmospheric Conditions : Part (Clude)	
Plan View	2 Classical Contraction of the second	
Chif	ST)	
$\left(\begin{array}{c} c \end{array} \right)$		1
		∥.
() -24	> (Xnero ()	,no
MAL		~
1		
	Trase	
Cross-Section		
\int		
$ \langle \rangle$	1 Lie	
$ \setminus \langle \rangle$		_
N.V.X	· · · ·	
	X II	

TABLE	TABLE A.39 Receptor M-39 15-Minute Equivalent Sound Level (15-min Leq) Calculation TMS08: 2014-08-28 0930-0945 Hrs.										
	No	ise Measu	irement [Data		Calculated Data		Traffic Volume Nosie Level			
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min				
	Leq					Leq	Leq				
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)				
9:30	53.7	60.3	76.4	56.7	49.3	54.9	54.9	55			
9:31	55.0	61.4	79.2	58.3	49.5			Valid Data Histogram			
9:32	55.3	62.3	84.8	59.8	50.0			Valid Data Histogram			
9:33	55.6	60.9	81.5	59.3	50.6		^{80.0} [
9:34	54.7	59.6	80.1	57.1	50.0						
9:35	52.8	57.7	74.6	54.9	49.4	55.0	70.0				
9:36	53.5	60.5	77.0	55.9	49.9		B[A])				
9:37	55.5	62.4	78.6	57.6	52.7		P 60.0				
9:38	56.4	63.4	82.6	59.7	51.9		-min L				
9:39	55.7	63.9	78.7	58.1	51.3		50.0				
9:40	54.2	60.7	79.6	58.5	49.2	54.8					
9:41	50.1	54.1	72.4	52.1	48.5		40.0 +	9:30 9:32 9:34 9:36 9:38 9:40 9:42 9:44			
9:42	57.0	64.1	83.9	60.8	50.3			TIME OF DAY			
9:43	54.1	60.5	82.5	57.4	48.9			Invalid Data			
9:44	55.8	60.8	81.8	58.7	51.8			Impact Threshold - Lmax			

S.R. 0015	, Section 088 - Central Susquehanna Valley Transportation Project
Site # 🔗 M-40	Description: Shale Junily Residence
MONITORING IN Notes: 150	FORMATION Off Peak Chili, LHS Date: \$\frac{8\frac{28\frac{14\frac{14}{5}}{5}}{5}}\$
	Cars: MT: HT: Monitored Leq: 54.7
SITE SKETCH:	Site Specifics
	Employee ID:
Plan View	Atmospheric Conditions : Warm Darty Claudy
	A ZI' (Martin Zi'
<u>Cross-Section</u>	a Ros
Rt.	

TABLE	TABLE A.40Receptor M-40 15-Minute Equivalent Sound Level (15-min Leq) CalculationTMS08:2014-08-28 0930-0945 Hrs.											
Noise Measurement Data							ted Data	Traffic Volume Nosie Level				
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min					
	Leq					Leq	Leq					
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)					
9:30	52.0	59.8	80.6	55.9	47.2	54.3	54.7	55				
9:31	55.0	62.7	78.8	58.7	48.5			Valid Data Histogram				
9:32	54.6	62.9	84.9	60.0	46.4			Valid Data Histografii				
9:33	56.4	62.7	82.7	60.0	49.8		^{80.0} T					
9:34	51.6	57.2	74.9	54.6	46.3							
9:35	51.1	57.8	78.1	56.0	44.9	54.8	70.0					
9:36	54.5	62.8	79.1	56.7	50.0		3[A])					
9:37	56.8	66.7	83.6	59.3	52.0		90 60.0					
9:38	55.4	63.5	82.6	59.3	49.6		-inin L					
9:39	54.1	63.3	82.0	57.6	47.9		50.0	┆┝┨┝┨┝┨┝┨┝┨ ┝ ┫┥┝┤┝┥┝┥┝┥┝┥┝ _{┍╍} ╡┝┨┝┥╟				
9:40	54.5	66.2	81.6	57.5	46.2	55.0						
9:41	48.6	54.7	74.3	51.0	45.8		40.0 +	9:30 9:32 9:34 9:36 9:38 9:40 9:42 9:44				
9:42	57.5	64.5	81.0	60.6	52.7		_	TIME OF DAY				
9:43	53.5	61.6	82.0	57.7	48.5			Invalid Data				
9:44	56.6	62.5	84.2	60.0	48.7			Impact Threshold - Lmax				

S.R. 0015 Site ≠∜ M- Ӌ	i, Section 088 - Central Susquehanna Valley Transportation Project Short-term Noise Monitoring Description: حم د مراود مراد
i	
	$\frac{2 - 0^{6} - 4^{1}}{28 - 2014}$ Date: <u>Aug 28 2014</u> Start Time:
	End Time: Meter ID: ろころうろ
	Roadway: Chilesgheehe
	Cars MT: HT:
	Monitored Leq: 49.7
SITE SKETCH: North Arrow	Site Specifics
4	Employee ID: MM
	Atmospheric Conditions :
<u>Plan View</u>	Deck ZSFA The Metrice
<u>Cross-Section</u>	A Road

TABLE	TABLE A.41 Receptor M-41 15-Minute Equivalent Sound Level (15-min Leq) Calculation TMS08: 2014-08-28 0930-0945 Hrs.										
	No	ise Meası	Irement I	Data		Calculated Data		Traffic Volume Nosie Level			
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min				
	Leq					Leq	Leq				
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)				
9:30	50.0	56.2	78.0	52.1	46.9	49.6	49.7	50			
9:31	47.2	50.6	76.5	48.5	45.3			Valid Data Histogram			
9:32	52.4	56.8	80.1	53.8	50.3			Valid Data Histografii			
9:33	48.3	51.7	87.4	50.0	47.1		^{80.0} T				
9:34	47.6	51.5	73.1	48.2	46.7						
9:35	49.7	57.9	75.2	51.2	47.4	49.8	70.0				
9:36	50.7	57.9	76.1	52.7	48.1		([V])				
9:37	51.1	55.5	76.7	53.2	48.3		P 60.0				
9:38	49.1	55.5	87.3	51.3	47.2		-min L				
9:39	47.8	55.1	90.3	49.3	45.4		50.0				
9:40	48.3	55.0	79.0	50.6	46.2	49.8					
9:41	50.6	54.9	82.6	52.1	48.5		40.0 +	9:30 9:32 9:34 9:36 9:38 9:40 9:42 9:44			
9:42	49.0	51.6	75.9	50.5	47.7		_	TIME OF DAY			
9:43	50.5	56.1	84.9	53.3	47.7			Invalid Data Valid Data			
9:44	50.1	56.0	75.9	52.3	47.2			Impact Threshold - Lmax			

	NFORMATION	
		_Off Peak
Notes:	Date: Y	<u>9 25 p</u>
	End Time:	
	Meter ID:	86293
	Roadway: Cars'	
	MT:	
		4.0
	Monitored Leq:	41.2
SITE SKETCH:	0140 00001600	
North Arrow		
	Atmospheric Conditions: Hartly Cloudy	
Plan View		
6	0 6000000000000000000000000000000000000	· · · · ·
	0 6 6 6 6 00000	
	0 6 6 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	5) <u>(6 6 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</u>	
	× METER	
	X METER	
	× METER SUNVOUN Patro Hang	
	× METER SUMPOON Patro HWS	
27oss-Section	× METER SUNTOON Patro Gravel Havs	

TABLE	TABLE A.42 Receptor M-42 15-Minute Equivalent Sound Level (15-min Leq) Calculation TMS08: 2014-08-28 0930-0945 Hrs.										
Noise Measurement Data							ted Data	Traffic Volume Nosie Level			
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min				
	Leq					Leq	Leq				
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)				
9:30	39.4	42.8	71.4	40.5	38.4	40.8	41.2	41			
9:31	39.6	44.9	71.2	41.0	38.2			Valid Data Histogram			
9:32	40.6	47.8	73.9	42.2	38.6			Valid Data Histografii			
9:33	43.4	58.2	82.9	45.2	40.3		^{80.0} T				
9:34	39.8	50.2	69.1	40.2	38.4						
9:35	40.3	49.0	68.3	42.0	38.4	41.8	70.0 -				
9:36	42.4	48.6	70.8	43.4	41.3		3[A])				
9:37	42.5	46.8	70.8	44.2	40.8		90 60.0 -				
9:38	42.6	58.0	82.3	44.0	40.7		-min L	_			
9:39	40.8	45.1	81.0	41.7	39.7		50.0				
9:40	39.5	43.0	82.0	40.5	38.0	40.8					
9:41	39.3	48.8	69.0	40.5	37.7		40.0 +	9:30 9:32 9:34 9:36 9:38 9:40 9:42 9:44			
9:42	40.7	43.2	72.4	41.7	39.3			TIME OF DAY			
9:43	40.2	44.8	73.7	41.7	38.9			Invalid Data			
9:44	43.1	52.2	71.9	46.0	40.2			Impact Threshold - Lmax			

TABLE	TABLE A.43Receptor M-43 15-Minute Equivalent Sound Level (15-min Leq) Calculation TMS10: 2014-08-28 1125-1140 Hrs.										
Noise Measurement Data							ted Data	Traffic Volume Nosie Level			
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min				
	Leq					Leq	Leq				
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)				
11:25	56.3	63.7	82.2	58.4	52.7	56.9	57.9	58			
11:26	57.1	65.3	84.8	60.2	52.1			Valid Data Histogram			
11:27	55.7	59.9	80.3	57.5	53.2			Valid Data Histografii			
11:28	57.3	63.3	83.1	60.7	53.4		^{80.0} T]			
11:29	57.9	63.7	85.5	61.0	53.6						
11:30	55.1	59.6	83.6	56.9	52.6	57.2	70.0				
11:31	58.2	65.5	89.8	61.6	52.7		3[A])				
11:32	55.7	63.6	78.4	57.6	53.1		면 60.0				
11:33	58.1	64.6	82.0	61.5	54.8		-min L				
11:34	57.9	66.9	83.6	61.3	52.7		÷ 50.0 -				
11:35	58.7	62.6	85.0	60.7	55.4	59.3					
11:36	55.9	62.4	82.9	59.0	52.0		40.0 +	11:25 11:27 11:29 11:31 11:33 11:35 11:37 11:39			
11:37	58.4	64.7	85.9	61.1	54.2		_	TIME OF DAY			
11:38	62.5	69.7	89.4	64.4	58.6			Invalid Data Valid Data			
11:39	58.0	62.9	82.5	60.8	52.2			Impact Threshold - Lmax			

S.R. 0015 Site Ям. 44	i, Section 088 - Central Susquehanna Valley Transportation Project Short-term Noise Monitoring Description:	
<u>.</u>		
MONITORING IN		
Notes: <u>AL</u>	JZ_9_44 Date: Aug Z8 Z010 Start Time: End Time: End Time: Meter ID: 362592	4
	Roadway: <u>52 14:7 SB</u> Cars: <u>52</u> MT: <u>5</u> HT: 12	B-3 1 MC 0
	Monitored Leq: 52.7	
SITE SKETCH: North Arrow	Site Specifics	
N.	Employee ID: MM	
	Atmospheric Conditions :	
Plan View		
	197	
Cross Section	Flashole Flashole ISFA * Zo It	
Cross-Section	Road Church Fond	

,

TABLE	A.44	Recept TMS09	or M-44 : 2014-	4 15-N 08-28 1	linute E 040-105	quivale 5 Hrs.	nt Sour	nd Level (15-min Leq) Calculation
	No	ise Measu	irement I	Data		Calcula	ted Data	Traffic Volume Nosie Level
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min	
	Leq					Leq	Leq	
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)	
10:40	51.6	58.3	80.7	56.0	46.9	52.1	52.7	53
10:41	48.1	55.6	86.6	51.7	43.8			Valid Data Histogram
10:42	48.7	53.3	84.7	50.9	41.7			Valid Data Histografii
10:43	54.8	61.6	82.7	58.6	42.9		^{80.0} T	
10:44	53.7	59.3	83.1	56.6	47.5			
10:45	54.7	64.2	78.6	57.1	49.8	52.9	70.0	
10:46	52.9	58.4	79.9	55.3	49.0		a[A])	
10:47	53.3	60.6	83.0	56.5	47.8		면 60.0	
10:48	51.5	57.4	82.1	54.2	45.3		-uin L	
10:49	51.1	57.0	85.6	54.3	46.1		50.0	
10:50	50.0	53.5	87.2	51.3	47.7	52.9		
10:51	51.5	60.4	83.7	55.1	45.1		40.0 +	10:40 10:42 10:44 10:46 10:48 10:50 10:52 10:54
10:52	53.3	61.2	84.1	57.2	45.1		_	TIME OF DAY
10:53	55.9	62.0	88.1	59.6	46.1			Invalid Data Valid Data
10:54	51.2	59.2	82.4	54.3	46.8			Impact Threshold - Lmax

TABLE	A.45	Recept TMS09	or M-45 : 2014-	5 15-N 08-28 1	linute E 040-105	quivale 5 Hrs.	nt Sour	nd Level (15-min Leq) Calculation
	No	ise Meası	urement I	Data		Calcula	ted Data	Traffic Volume Nosie Level
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min	
	Leq					Leq	Leq	
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)	
10:40	57.5	65.7	85.3	61.7	50.7	58.2	58.9	59
10:41	52.8	58.4	79.2	55.4	49.9			Valid Data Histogram
10:42	55.8	63.6	83.7	59.2	49.8			Valid Data Histografii
10:43	61.1	70.6	88.7	65.5	50.0		^{80.0} T]
10:44	59.3	69.6	88.7	63.2	49.4			_
10:45	61.5	70.7	85.5	65.6	52.7	60.5	70.0	
10:46	59.9	69.1	87.2	64.2	51.3		3[A])	
10:47	61.5	73.0	85.9	64.9	50.9		P 60.0	
10:48	59.7	66.7	87.1	64.0	52.0		-min L	
10:49	59.1	70.3	90.0	64.1	50.5		50.0	
10:50	55.7	63.9	82.3	58.9	50.6	57.5		
10:51	58.0	65.3	93.2	62.2	52.2		40.0 +	10:40 10:42 10:44 10:46 10:48 10:50 10:52 10:54
10:52	56.6	66.6	85.8	60.8	49.2		_	TIME OF DAY
10:53	59.9	66.2	87.0	64.2	50.8			Invalid Data Valid Data
10:54	55.4	64.4	81.1	58.7	50.1			Impact Threshold - Lmax

Short-term Noise Monitoring

<u>`</u>•

TABLE	A.46	Recept TMS09	or M-46 : 2014-	6 15-N 08-28 1	linute E 040-105	quivale 5 Hrs.	nt Sour	nd Level (15-min Leq) Calculation
	No	ise Meası	urement I	Data		Calcula	ted Data	Traffic Volume Nosie Level
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min	
	Leq					Leq	Leq	
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)	
10:40	48.0	57.7	79.0	50.1	45.5	50.8	51.0	51
10:41	49.3	56.3	76.4	53.2	44.7			Valid Data Histogram
10:42	48.0	55.0	78.7	50.8	44.3			Valid Data Histografii
10:43	52.7	63.2	78.8	57.4	44.1		^{80.0} T	
10:44	53.1	61.3	81.3	56.2	48.0			
10:45	52.0	57.3	79.7	55.2	46.8	51.9	70.0	
10:46	52.3	58.3	79.7	55.4	46.2		3[A])	
10:47	52.4	59.6	79.1	55.5	47.5		면 60.0	
10:48	50.6	57.4	81.8	54.1	46.3		-min L	
10:49	51.9	57.1	82.8	54.6	47.5		- 50.0	
10:50	48.1	53.5	76.5	50.8	45.4	50.1		
10:51	46.5	50.7	74.8	48.3	44.9		40.0 +	10:40 10:42 10:44 10:46 10:48 10:50 10:52 10:54
10:52	50.7	57.1	82.6	53.3	46.8		_	TIME OF DAY
10:53	53.4	62.9	85.1	57.8	47.1			Invalid Data
10:54	48.1	53.3	73.2	50.4	45.7			Impact Threshold - Lmax

.

TABLE	A.47	Recept TMS09	or M-47 : 2014-	7 15-N 08-28 1	linute E 040-105	quivale 5 Hrs.	nt Sour	nd Level (15-min Leq) Calculation
	No	ise Meası	urement I	Data		Calcula	ted Data	Traffic Volume Nosie Level
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min	
	Leq					Leq	Leq	
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)	
10:40	54.2	61.5	83.8	58.0	49.3	57.0	57.9	58
10:41	55.7	65.2	82.8	61.2	48.6			Valid Data Histogram
10:42	54.8	64.4	89.7	57.8	48.3			Valid Data Histografii
10:43	58.5	69.5	83.5	63.9	48.3		^{80.0} T	
10:44	59.4	65.4	87.9	63.2	52.4			
10:45	60.3	66.6	87.3	64.1	53.5	59.5	70.0	
10:46	58.8	67.2	85.3	61.9	53.2		3[A])	
10:47	61.3	71.6	89.1	65.7	52.2		면 60.0	
10:48	57.8	66.5	92.1	63.5	50.0		-min L	
10:49	58.3	69.6	93.1	60.8	50.3		50.0	
10:50	54.6	62.9	85.1	58.2	49.3	56.6		
10:51	51.7	62.2	81.3	54.3	46.5		40.0 +	10:40 10:42 10:44 10:46 10:48 10:50 10:52 10:54
10:52	56.0	63.7	86.5	59.8	50.4			TIME OF DAY
10:53	59.6	67.4	89.7	64.9	48.8			Invalid Data
10:54	57.3	67.9	85.1	61.6	48.3			Impact Threshold - Lmax

Short-term Noise Monitoring

Site # M-48 Description:

MONITORING INFORMATION

SITE SKETCH:

TABLE	A.48	Recept TMS02	or M-48 : 2014-	3 15-N ∙08-26 1	linute E 420-143	iquivale 5 Hrs.	ent Sour	nd Level (15-min Leq) Calculation
	No	ise Meası	irement [Data		Calcula	ted Data	Traffic Volume Nosie Level
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min	
	Leq					Leq	Leq	
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)	
14:20	55.9	63.1	83.8	57.4	53.4	56.7	55.5	56
14:21	53.8	58.0	81.5	55.7	51.1			Valid Data Histogram
14:22	56.0	69.2	83.7	58.8	50.1			Valu Data Histogram
14:23	56.7	71.0	84.1	59.2	49.6		^{80.0} T]
14:24	59.3	72.8	88.8	63.3	53.4			_
14:25	54.9	70.1	85.7	56.4	52.0	54.6	70.0	
14:26	54.7	59.7	84.1	57.0	51.6		3[A])	-
14:27	53.9	59.9	83.4	56.2	50.7		90 60.0 -	D
14:28	54.7	60.5	84.3	57.3	50.3		min L	
14:29	54.9	60.4	81.6	57.6	49.1		50.0	
14:30	53.5	59.1	82.3	56.2	49.1	54.9		
14:31	56.5	61.3	83.9	58.7	52.3		40.0 +	14:20 14:22 14:24 14:26 14:28 14:30 14:32 14:34
14:32	55.4	61.7	84.2	58.9	49.3			TIME OF DAY
14:33	55.5	61.2	83.5	58.8	50.4			Invalid Data Valid Data
14:34	52.1	58.2	81.7	55.3	47.7			Impact Threshold - Lmax

S.R. 0015, Section 088 - Central Susquehanna Valley Transportation Project Short-term Noise Monitoring Site # M- 49 Description: 30 80 Wanty Line Food

MONITORING INFORMATION

SITE SKETCH:

~

TABLE	A.49	Recept TMS02	or M-49 : 2014-	9 15-N 08-26 1	linute E 420-143	quivale 5 Hrs.	nt Sour	nd Level (15-min Leq) Calculation
	No	ise Meası	irement [Data		Calcula	ted Data	Traffic Volume Nosie Level
TIME	1-min	Lmax	Lpk	L(10.0)	L(90.0)	5-min	15-min	
	Leq					Leq	Leq	
	dB(A)	dB(A)	dB(C)	dB(A)	dB(A)	dB(A)	dB(A)	
14:20	56.0	59.0	84.6	57.1	55.0	56.2	55.9	56
14:21	56.6	60.9	83.9	58.7	54.0			Valid Data Histogram
14:22	54.7	57.5	80.6	55.6	53.5			Valid Data Histogram
14:23	55.9	59.5	83.1	57.7	53.8		^{80.0} T	
14:24	57.3	61.3	84.0	58.9	55.5			-
14:25	54.7	62.9	87.0	56.4	51.6	56.7	70.0	
14:26	61.9	76.0	98.3	64.5	51.6		3[A])	
14:27	53.9	58.2	82.3	55.8	50.8		면 60.0	- <u>-</u>
14:28	52.8	57.8	82.7	55.5	47.1		-min L	
14:29	49.2	55.4	77.3	51.5	45.2		50.0	
14:30	53.0	57.6	81.3	55.7	48.3	54.6		
14:31	54.7	58.3	82.0	56.3	52.2		40.0 +	14:20 14:22 14:24 14:26 14:28 14:30 14:32 14:34
14:32	54.8	58.7	81.9	57.0	50.4			TIME OF DAY
14:33	55.1	58.6	84.4	56.7	50.5			Invalid Data Valid Data
14:34	55.0	58.5	80.2	56.4	53.3			Impact Threshold - Lmax

Appendix B

Traffic Data

			2044	2044 Class								Pe	er Classificat	:ioı					
Winfield Inte	rchange	2044 Peak Hr	Peak Hr	1, 2, 3	2044 Class 4 - 13 ADT	2044 ADT	Bikes	Cars	2-Axle Long	Bus	2-Axle 6 Tire	3-Axle Single	4-Axle Single	<5 Axle Double	5 Axle Double	>6 Axle Double	>6 Axle Mult	6 Axle Mult	>6 Axle Mult
			(ПV)	ADT			2.0%	69.3%	28.7%	8.11%	39.81%	6.79%	0.57%	13.77%	27.36%	0.57%	1.89%	0.57%	0.57%
South of	NB	2030	300	24366	4225	28592	476	16891	7000	343	1682	287	24	582	1156	24	80	24	24
Interchange	SB	2542	290	31718	4085	35803	619	21987	9112	331	1626	277	23	563	1118	23	77	23	23
Interchange	Total	4572	590	56085	8310	64394	1095	38879	16112	674	3308	564	47	1145	2273	47	157	47	47
North of	NB	1595	282	18493	3972	22465	361	12820	5313	322	1581	270	22	547	1087	22	75	22	22
Interchange	SB	1930	275	23310	3873	27183	455	16159	6696	314	1542	263	22	533	1060	22	73	22	22
Interchange	Total	3525	557	41803	7845	49648	816	28978	12009	636	3123	533	44	1081	2146	44	148	44	44
Fast of	EB	463	37	6000	521	6521	117	4159	1724	42	207	35	3	72	143	3	10	3	3
Interchange	WB	509	58	6352	817	7169	124	4403	1825	66	325	55	5	113	224	5	15	5	5
interchange	Total	972	95	12352	1338	13690	241	8563	3548	109	533	91	8	184	366	8	25	8	8
West of	EB	1452	98	19070	1380	20451	372	13219	5478	112	549	94	8	190	378	8	26	8	8
Interchange	WB	1321	122	16887	1718	18606	330	11706	4851	139	684	117	10	237	470	10	32	10	10
Interchange	Total	2773	220	35958	3099	39056	702	24926	10330	251	1234	210	18	427	848	18	58	18	18
	EB	213	26	2634	366	3000	51	1826	757	30	146	25	2	50	100	2	7	2	2
NB On-Ramp	WB	22	12	141	169	310	3	98	41	14	67	11	1	23	46	1	3	1	1
	Total	235	38	2775	535	3310	54	1924	797	43	213	36	3	74	146	3	10	3	3
	EB	22	4	254	56	310	5	176	73	5	22	4	0	8	15	0	1	0	0
NB Off-Ramp	WB	648	52	8394	732	9127	164	5819	2411	59	291	50	4	101	200	4	14	4	4
	Total	670	56	8648	789	9437	169	5995	2484	64	314	54	4	109	216	4	15	4	4
	EB	814	42	10873	592	11465	212	7537	3124	48	236	40	3	82	162	3	11	3	3
SB On-ramp	WB	27	13	197	183	380	4	137	57	15	73	12	1	25	50	1	3	1	1
	Total	841	55	11070	775	11845	216	7674	3180	63	309	53	4	107	212	4	15	4	4
	WB	213	37	2479	521	3000	48	1718	712	42	207	35	3	72	143	3	10	3	3
SB Off-ramp	EB	16	3	183	42	225	4	127	53	3	17	3	0	6	11	0	1	0	0
	Total	229	40	2662	563	3225	52	1845	765	46	224	38	3	78	154	3	11	3	3

			2044	2044 Class								Pe	er Classificat	tioı					
Ridge Intere	change	2044 Peak Hr	Peak Hr	1, 2, 3	2044 Class 4 - 13 ADT	2044 ADT	Bikes	Cars	2-Axle Long	Bus	2-Axle 6 Tire	3-Axle Single	4-Axle Single	<5 Axle Double	5 Axle Double	>6 Axle Double	>6 Axle Mult	6 Axle Mult	>6 Axle Mult
			(ПV)	ADT			2.0%	69.3%	28.7%	8.11%	39.81%	6.79%	0.57%	13.77%	27.36%	0.57%	1.89%	0.57%	0.57%
South of	NB	1593	282	18465	3972	22437	360	12800	5305	322	1581	270	22	547	1087	22	75	22	22
Interchange	SB	1930	275	23310	3873	27183	455	16159	6696	314	1542	263	22	533	1060	22	73	22	22
interchange	Total	3523	557	41775	7845	49620	815	28959	12001	636	3123	533	44	1081	2146	44	148	44	44
North of	NB	1586	360	17268	5070	22338	337	11970	4961	411	2018	344	29	698	1387	29	96	29	29
Interchange	SB	1718	239	20831	3366	24197	407	14440	5984	273	1340	229	19	464	921	19	64	19	19
interchange	Total	3304	599	38099	8437	46535	744	26411	10945	685	3359	573	48	1162	2308	48	159	48	48
East of	EB	318	20	4197	282	4479	82	2909	1206	23	112	19	2	39	77	2	5	2	2
Last OI	WB	521	28	6944	394	7338	136	4814	1995	32	157	27	2	54	108	2	7	2	2
interchange	Total	839	48	11141	676	11817	217	7723	3201	55	269	46	4	93	185	4	13	4	4
West of	EB	772	148	8789	2085	10873	172	6093	2525	169	830	142	12	287	570	12	39	12	12
Interchange	WB	770	42	10254	592	10845	200	7108	2946	48	236	40	3	82	162	3	11	3	3
interchange	Total	1542	190	19042	2676	21718	372	13200	5470	217	1065	182	15	369	732	15	50	15	15
NB On-ra	amp	492	102	5493	1437	6930	107	3808	1578	117	572	98	8	198	393	8	27	8	8
NB Off-ra	amp	499	24	6690	338	7028	131	4638	1922	27	135	23	2	47	92	2	6	2	2
	WB	458	17	6211	239	6451	121	4306	1784	19	95	16	1	33	65	1	5	1	1
SB On-ramp	EB	285	53	3268	746	4014	64	2265	939	61	297	51	4	103	204	4	14	4	4
	Total	743	70	9479	985	10465	185	6571	2723	80	392	67	6	136	269	6	19	6	6
SB Off-ra	imp	531	34	7000	479	7479	137	4852	2011	39	191	33	3	66	131	3	9	3	3

* NOTE: Peak hour truck volumes based on percentages previously made during 2003 FEIS Report

K-factor of 7.1% was used in previous 2003 FEIS Report

Truck classification percentages used is the average of 2014 ATR data

Orth-Rodgers & Associates, Inc. TRANSPORTATION ENGINEERS AND PLANNERS 2024 and 2044 DAM-RC5 Total Average Daily Traffic Volumes Central Susquehanna Valley Transportation Project Union County, Snyder County, Northumberland County, PA WEST BRANCH SUSQUEHANNA RIVER 147 32,400 38,900 1-80 405 RIDGE HAFER RD RD <u>IN</u>DUSTRIAL PARK 642 405 **[**147 RT 192 · 45 31,500 37,500 (11 MARKETST 36,800 45,200 18,500 21,200 FRONTST MOOREAVE 35,600 44,000 15,000/ 19,300 NORTH BRANCH SUSQUEHANNA RIVER 52,600 61,000 15 28,700 33,400 5,100 8,700 11 **BLUE HILL BRIDGE KMART** 31,500 **42,500** ENTRANCE 61

27,000 34,200

44,000 56,100 VETERANS MEMORIAL BRIDGE 29,500 30,700 8TH AVE -11 15 57,800 **64,300** 33,800 45,600 147 11TH AVE -25,100 34,000 PARK RD 24,500 33,500 16TH ST -26,200 34,400 MALL MAIN STEM SUSQUEHANNA RIVER ENTRANCE 25,700 33,800 SELINSGROVE BYPASS STUB

23,800 26,300

70,000 = 2024 ADT Volume **75,000** = 2044 ADT Volume andwidth Thickness Corresponde to ADT Volume

Bandwidth Thickness Corresponds to ADT Volume

2024 and 2044 DAM-RC5 Total Average Daily Truck Volumes **Central Susquehanna Valley Transportation Project** Union County, Snyder County, Northumberland County, PA WEST BRANCH SUSQUEHANNA RIVER 147 4,800 5,800 1-80

RMSRM466	ROADW	AY MAN	IAGEMENT	INFORMAT:	ION SYSTEM 04/11/2014 10:35:18
LTERM: NBAUER (CURREN	T TRAF	FIC COUN	Г DATA	(DIRECTIONAL)
COUNTY: 54 SNYDE	ER				COUNT - KEY.: 54/0015/0071/0050
STATE ROUTE: 0015			BASE YE	R: 2011	– DATE: 11/17/2011
SEGMENT: 0011					- TYPE: MACHINE
OFFSET: 0000		BASE	CURRENT	% OF	– REF. NO: 2011362
FT: 351 MI: (0.066	YEAR	ESTIMATE	TOTAL	DIRECTION SOUTH
TOTAL VEHICLES (AI):	8732	8474		DURATION (HOURS): 24
TOTAL TRUCKS (ADT)	C).:	803	779		PERCENT TRUCKS: 09
3 AXLE W/TRL	:	64	62	8.0	TRAF PATTERN GROUP: 03
3 AXLE-MULTI AXLI	TRL:	353	343	44.0	DAILY - TOTAL VMT.: 559
6 AXLE-SINGLE TRI	:	9	9	1.1	– TRUCK VMT.: 51
5 AXLE-MULTI TRL.	:	29	28	3.6	DESIGN HR VOL FACTORS
6 AXLE-MULTI TRL.	:	6	б	0.7	K: 8 D: 55 T: 7
7 AXLE-MULTI TRL.	:	4	4	0.5	TRAFFIC COUNT LIMITS
					CO -SR- SEG. OFF.
					FROM: 54 0015 0011 0000
					TO: 59 0015 0061 0570
WEEKDAY TRUCKS	:	1028	997		PARALLEL LIMITS
18K ESAL - RIGID	:	983	1203		FROM: 54 0015 0010 0000
- FLEXIBI	ΞE.:	679	817		TO: 59 0015 0060 0570

ACTION: I (A B E F G H I J L Q R S V W X Y) MESSAGES: PRESS PF10 TO DISPLAY PREVIOUS CLASSES

RMSRM466	ROADV	VAY MAN	JAGEMENT	INFORMAT	ION SYSTEM 04/11/2014 10:34:03
LTERM: NBAUER	CURREI	IT TRAE	FIC COUN	Γ DATA	(DIRECTIONAL)
COUNTY: 54 SNYD	ER				COUNT - KEY.: 54/0015/0071/0050
STATE ROUTE: 0015			BASE YI	R: 2011	– DATE: 11/17/2011
SEGMENT: 0011					- TYPE: MACHINE
OFFSET: 0000		BASE	CURRENT	% OF	- REF. NO: 2011362
FT: 351 MI:	0.066	YEAR	ESTIMATE	TOTAL	DIRECTION: SOUTH
TOTAL VEHICLES (A	DT):	8732	8474		DURATION (HOURS): 24
TOTAL TRUCKS (ADT	T).:	803	779		PERCENT TRUCKS: 09
MOTORCYCLE	:	0	0	0.0	TRAF PATTERN GROUP: 03
CAR	:	6532	6339	75.0	DAILY - TOTAL VMT.: 559
PICKUP/VAN	:	1397	1356	16.0	– TRUCK VMT.: 51
					DESIGN HR VOL FACTORS
BUS	:	80	78	10.0	K: 8 D: 55 T: 7
2 AXLE-SIX TIRE.	:	186	179	24.0	TRAFFIC COUNT LIMITS
3 AXLE-SINGLE UN	IIT.:	48	46	6.0	CO -SR- SEG. OFF.
4 AXLE-SINGLE-UN	IIT.:	24	24	3.0	FROM: 54 0015 0011 0000
					TO: 59 0015 0061 0570
WEEKDAY TRUCKS	:	1028	997		PARALLEL LIMITS
18K ESAL - RIGID.	:	983	1203		FROM: 54 0015 0010 0000
- FLEXIB	BLE.:	679	817		TO: 59 0015 0060 0570

ACTION: I (A B E F G H I J L Q R S V W X Y) MESSAGES: PRESS PF11 TO DISPLAY MORE TRUCK CLASSES

RMSRM466 ROAD	WAY MAN	NAGEMENT	INFORMA	FIC	DN SYSTEM 11/10/2014 10:20:55
LTERM: NBAUER CURREN	NT TRA	FFIC COUN	I DATA		(DIRECTIONAL)
COUNTY: 49 NORTHUMBE	RLAND			1	COUNT - KEY.: 49/0147/0620/1500
STATE ROUTE: 0147		BASE YI	R: 2013	1	- DATE: 08/14/2013
SEGMENT: 0620		1.5		1	- TYPE: AXLE VOL
OFFSET: 0000	BASE	CURRENT	% OF		- REF. NO: 2013249
FT: 2772 MI: 0.525	YEAR	ESTIMATE	TOTAL	6	DIRECTION BOTH
TOTAL VEHICLES (ADT):	14905	14905		1	DURATION (HOURS): 24
TOTAL TRUCKS (ADTT) .:	3279	3279		T	PERCENT TRUCKS: 22
MOTORCYCLE	149	149	1.0	1	TRAF PATTERN GROUP: 03
CAR	8496	8496	57.0	1	DAILY - TOTAL VMT.: 7825
PICKUP/VAN	2981	2981	20.0	1	- TRUCK VMT.: 1721
		- aeaea	C	1	DESIGN HR VOL FACTORS
BUS:	328	328	10.0	1	K: 10 D: 55 T: 11
2 AXLE-SIX TIRE:	540	540	15.0	1	TRAFFIC COUNT LIMITS
3 AXLE-SINGLE UNIT.:	197	197	6.0	I	CO -SR- SEG. OFF.
4 AXLE-SINGLE-UNIT.:	33	33	1.0	Ţ	FROM: 49 0147 0604 1987
				Ĵ.	TO: 49 0147 0690 0000
WEEKDAY TRUCKS	4197	4197		1	
18K ESAL - RIGID:	3878	3878		1	
- FLEXIBLE.:	2559	2559		Ţ	

ACTION: I (A B E F G H I J L Q R S V W X Y) MESSAGES: PRESS PF11 TO DISPLAY MORE TRUCK CLASSES

RMSRM641	ROADWAY MANAGEMENT	INFORMATION SYSTE	CM 11/10/2014 10:22:
LTERM: NBAUER	AXLE TRAFFIC H	EADER INFORMATION	
COUNTY NO / NAM	E: 49 / NORTHUMBERLAND	SR 0147	+
			PREDOMINENT
DIRECTION	- BOTH		
SEGMENT/OFFSET	- 0620 / 1500	1	BOTH DIRECTION
DATE OF COUNT	- 08 / 14 / 2013	/ /	LENGTH: 2772
HOUR RANGE	- 00 / 24	1	SURFACE.: 61
SPEED LIMIT	- 55		LANES: 02
LOCATION START	- EIGHTH		DIRECTION
LOCATION END	- SR 0011		LENGTH:
MUNICIPALITY	- POINT		SURFACE.:
TRAFFIC ROUTE	- PA147		LANES:
WEATHER	- FAIR		+
HPMS SECT. NO	- /	/	DATA ENTRY/UPDATE
COUNTER NOS.	- 8751 / 0000 / 0000	1 1	
SET BY/ENTERED	- VC / PJF	1	USERID: BRANLEA
SET UP DATE	- 08 / 14 / 2013	1 1	DATE: 09/06/2013
RETRIEVAL DATE	- 08 / 14 / 2013	1 - 1 -	+
COMMENTS	- SN27204100 FEET SOUTH	I OF OAK D	
A CHITON - T /A	DECUTIODCUV	7)	
ACTION: I (A	DEGUTOÁKPOVI	- 1	
RMSRM648 ROADWAY MANAGEMENT INFORMATION SYSTEM 11/10/2014 10:23:17 AXLE SENSOR TRAFFIC COUNT SUMMARY LTERM: NBAUER DIRECTION: N/E COUNTY: 49 SR: 0147 SEGMENT: 0620 OFFSET: 1500 COUNT DATE: 08 / 14 / 2013 DIRECTION: COUNTY: SR: SEGMENT: OFFSET: COUNT DATE: / / HOURS DIR 00-01 01-02 02-03 03-04 04-05 05-06 06-07 07-08 08-09 09-10 10-11 11-12 N/E 287 209 160 205 338 623 788 1048 1106 1029 1050 1085 TOTAL 287 209 160 205 338 623 788 1048 1106 1029 1050 1085 HOURS DIR 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24 N/E 1078 1072 1221 1268 1223 1224 930 766 758 617 463 306 TOTAL 1078 1072 1221 1268 1223 1224 930 766 758 617 463 306 DIR DIR FACTOR MON. TUES. WED. THURS. FRI. SAT. SUN. TOTAL 0 0 18854 0 0 0 0 N/E 100 18854 0 0 0 0 0 18854 0 0 0 0 0 0 0 18854 0 0 0 0 TOTAL 100 R - RAW COUNT READY FOR CENTRAL OFFICE REVIEW

ACTION: I (A E G H I J Q R S T U X) MESSAGES:

HOURLY28720916020533862378810481106102910501085TOTALS107810721221126812231224930766758617463306

DAILYMON. TUES.WED. THURS.FRI.SAT.SUN.WEEKLY TOTALTOTALS001885400018854

ACTION: I (A E G H I J Q R S U X Y) MESSAGES:

RMSRM64	46		ROADWA	AY MANA	AGEMEN	r infoi	RMATION	N SYSTE	EM 11,	/10/201	10:	23:03
LTERM:	NBAUER	2	AXL	E SENSO	OR TRAI	FFIC WI	EEKDAY	COUNT				
DIRECT	FION: 1	V/E										
COUNTY	Y: 49	SR: 0	147 SI	EGMENT	: 0620	OFFSI	ET: 150	00 00	JNT DAT	re: 08	/ 14 /	2013
HOURS:	00-01	01-02	02-03	03-04	04-05	05-06	06-07	07-08	08-09	09-10	10-11	11-12
	12-13	13-14	14-15	15-16	16-17	17-18	18-19	19-20	20-21	21-22	22-23	23-24
DATE:												
1												
MON												
1												
TUES												
08 / 14	287	209	160	205	338	623	788	1048	1106	1029	1050	1085
WED	1078	1072	1221	1268	1223	1224	930	766	758	617	463	306
1												
THUR												
1												
FRI												
ACTION	: I	(A E G	ΗΙJ	QRS	UXY)						
MESSAG	ES:											

COUNTY	: 49	COUNTY	NAME: N	IORTHUMB	ERLAND	DATE	OF CC	UNT: 09	/ 01 /	2009
DIR: N	/ E	LANE:	1 SR:	0147	SEGME	NT: 0620	SE	GMENT C	FFSET:	1500
CLASS:	1	2	3	4	5	6	7	8	9	10
HOUR										
01	0	15	6	1	4	5	0	0	21	0
02	0	16	10	3	2	4	0	0	21	0
03	0	12	7	4	0	3	0	0	19	0
04	0	13	11	0	7	2	0	2	11	0
05	0	24	19	8	8	2	0	2	26	0
06	2	80	31	5	6	2	0	6	24	0
07	2	134	59	4	7	9	0	10	40	0
08	2	204	72	8	15	7	1	6	52	0
09	4	222	103	15	27	9	2	10	43	0
10	4	170	76	14	20	8	1	8	43	0
11	3	191	96	13	20	14	0	5	55	2
12	5	201	79	20	19	5	2	12	59	0
1-12	22	1282	569	95	135	70	6	61	414	2
1-12	22	1282	569	95	135	70	6	61	414	2

<u>ما</u>ت.

COUNTY	10	COUNTRY	NAME -		DEDT AN	D	DAME	OF CO		1 01	2000
DTD. M	45	LAND. 1	NAME: 1	NORTHUM	BERLAN	D	DATE	OF CO	JNT: US	3 / UI /	2009
CIACC.	/ E	LANE: 1	SR 10	: 0147	SEG	MENT:	0620	SE	GMEN'I (DFFSET:	1500
CTV22:	11	12	13	TOTAL							
O1	0	0	0	5.0							
0.2	0	0	0	52							
02	0	0	0	56							
03	0	0	0	45							
04	0	0	0	46							
05	0	0	0	89							
06	0	0	0	156							
07	0	0	0	265							
08	0	0	0	367							
09	0	1	0	436							
10	0	0	0	344							
11	0	0	0	399							
12	0	0	0	402							
)1-12	0	1	0	2657							
)1-12	0	1	0	2657							
			3 .3.1	5.50	3.2.						

RMSRM63	38	V.D	ROADWAY	MANAGEM	ENT INE	ORMATION	SYSTE	M 10/2	22/2014	10:56:59
COUNTY	JOBEA (: 49	COUNTY	MACHINE NAME: N	IORTHUMB	CLASSI ERLAND	FICATION DATE	OF CC	L OUNT: 09	9 / 01 /	2009
DIR: N	1 / E	LANE:	1 SR:	0147	SEGME	NT: 0620	SE	GMENT (OFFSET:	1500
CLASS:	1	2	3	4	5	6	7	8	9	10
HOUR										
13	5	212	82	13	25	10	0	14	72	0
14	4	210	72	9	16	8	2	9	55	0
15	8	239	99	12	23	5	0	7	61	1
16	8	298	115	9	29	7	1	14	56	0
17	5	272	74	11	13	3	0	8	60	0
18	7	288	108	8	15	13	0	7	63	0
19	3	192	61	4	13	1	0	6	42	0
20	4	166	58	7	3	2	0	4	51	0
21	4	146	58	6	6	7	0	5	38	0
22	0	104	28	9	0	1	0	1	39	0
23	2	80	17	5	4	1	0	3	34	1
24	0	46	12	5	3	0	0	3	25	0
13-24	50	2253	784	98	150	58	3	81	596	2
01-24	72	3535	1353	193	285	128	9	142	1010	4

ACTION: I (A E G H I J Q R S U X Y) MESSAGES:

COUNTY:	49	COUNTY	NAME: 1	NORTHUMB	ERLAND	DATE	OF COUNT: 09 / 01 / 2009
DIR: N	/ E	LANE: 1	SR	: 0147	SEGMENT:	0620	SEGMENT OFFSET: 1500
CLASS:	11	12	13	TOTAL			
HOUR							
13	0	0	0	433			
14	0	0	0	385			
15	1	0	0	456			
16	0	0	0	537			
17	0	0	0	446			
18	0	0	0	509			
19	1	0	0	323			
20	0	0	0	295			
21	0	0	0	270			
22	0	0	0	182			
23	0	0	0	147			
24	0	0	0	94			
3-24	2	0	0	4077			
1-24	2	1	0	6734			

RMSRM63	8		ROADWAY	MANAGEM	ENT INF	ORMATION	SYSTEM	1 10/2	2/2014	10:57:11
LTERM:	JOBEA	VE	MACHINE	TRAFFIC	CLASSI	FICATION	DETAIL			
COUNTY	: 49	COUNTY	NAME: N	ORTHUME	BERLAND	DATE	OF COU	JNT: 09	/ 01 /	2009
DIR: N	/ E	LANE:	2 SR:	0147	SEGME	NT: 0620	SEC	GMENT O	FFSET:	1500
CLASS:	1	2	3	4	5	6	7	8	9	10
HOUR										
01	0	34	9	5	1	0	6	0	33	0
02	0	20	9	3	1	2	6	1	21	0
03	0	10	6	4	0	1	2	2	22	0
04	0	14	11	2	3	1	0	2	38	0
05	0	17	9	4	3	0	0	5	38	0
06	0	59	25	5	9	0	0	5	37	-1
07	1	109	34	6	9	1	0	3	34	0
08	3	262	82	8	22	10	0	6	43	0
09	3	267	83	12	19	10	4	8	55	0
10	4	227	98	14	24	4	3	4	62	0
11	2	180	79	9	18	7	5	13	52	0
12	4	196	78	10	25	5	3	11	56	1
01-12	17	1395	523	82	134	41	29	60	491	2
01-12	17	1395	523	82	134	41	29	60	491	2

ACTION: I (A E G H I J Q R S U X Y) MESSAGES:

RMSRM63	38		ROADWAY	MANAGEM	MENT INFORM	ATION	SYSTEM 10/22/2014 10:57:17
LTERM:	JOBEA	VE	MACHINE	TRAFFIC	CLASSIFIC	ATION	DETAIL
COUNTY	Y: 49	COUNTY	NAME: 1	NORTHUME	BERLAND	DATE	OF COUNT: 09 / 01 / 2009
DIR: N	V/E	LANE:	2 SR	: 0147	SEGMENT:	0620	SEGMENT OFFSET: 1500
CLASS:	11	12	13	TOTAL			
HOUR							
01	0	0	0	88			
02	0	0	0	63			
03	4	0	0	51			
04	0	0	0	71			
05	0	0	0	76			
06	0	0	0	141			
07	2	0	0	199			
08	0	0	0	436			
09	0	0	0	461			
10	0	0	0	440			
11	0	0	0	365			
12	0	0	0	389			
01-12	6	0	0	2780			
01-12	6	0	0	2780			
ACTION:	I	(A E G	НІЈQ	RSUX	(Y)		
MESSAGE	IS:						

RMSRM63	8		ROADWAY	MANAGEM	ENT INE	FORMATION	SYSTE	M 10/2	22/2014	10:57:21
LTERM:	JOBEA	VE	MACHINE	TRAFFIC	CLASSI	FICATION	DETAI	L		
COUNTY	: 49	COUNTY	NAME: 1	NORTHUMBI	ERLAND	DATE	OF CO	UNT: 09	9 / 01 /	2009
DIR: N	1/Е	LANE:	2 SR	: 0147	SEGME	ENT: 0620	SE	GMENT (OFFSET:	1500
CLASS:	1	2	3	4	5	6	7	8	9	10
HOUR										
13	4	190	82	12	28	9	2	12	47	2
14	6	228	93	14	17	9	6	13	53	0
15	6	243	104	19	21	6	3	15	52	0
16	3	266	105	10	25	13	1	6	56	0
17	4	318	109	5	19	8	2	12	63	0
18	8	306	95	9	15	9	0	10	63	1
19	2	206	68	7	11	2	0	5	59	3
20	2	140	51	4	5	2	0	5	59	0
21	2	138	42	6	3	2	0	0	51	0
22	2	86	24	11	3	2	0	1	63	0
23	2	78	25	4	3	3	2	1	46	0
24	0	54	8	8	1	2	0	5	36	0
13-24	41	2253	806	109	151	67	16	85	648	6
01-24	58	3648	1329	191	285	108	45	145	1139	8

ACTION: I (A E G H I J Q R S U X Y) MESSAGES:

COUNTY:	49	COUNTY	NAME: N	ORTHUM	BERLAND	DATE	OF COUNT: 09 / 01 / 2009
DIR: N	/ E	LANE: 2	SR:	0147	SEGMEN	r: 0620	SEGMENT OFFSET: 1500
CLASS:	11	12	13	TOTAL			
HOUR							
13	0	0	0	388			
14	0	0	0	439			
15	0	0	0	469			
16	0	0	0	485			
17	0	0	0	540			
18	0	0	0	516			
19	0	0	0	363			
20	0	0	0	268			
21	0	0	0	244			
22	0	0	0	192			
23	0	0	0	164			
24	0	0	0	114			
13-24	0	0	0	4182			
01-24	6	0	0	6962			
Chiefer 1	J.,		0.3.2		N.S.		

RMSRM639	ROADWAY	MANAGEMENT	INFORMATIC	N SYSTEM	10/22/2014	10:57:32
LTERM: JOBEAVE	MACHINE	TRAFFIC CLAS	SIFICATIO	ON SUMMARY		
DIR: N/E COUNTY:	49 COUNTY	NAME: NORTHU	JMBERLAND			
SR:	0147 SEG	MENT: 0620	SEGMENT	OFFSET:	1500	
DATE	OF COUNT:	09 / 01 / 20	09 HOUR	RANGE: 0	1 - 24	
DIR: COUNTY:	COUNTY 1	NAME :				
SR:	SEG	MENT:	SEGMENT	OFFSET:		
DATE	OF COUNT:	1 1	HOUR	RANGE:	- 47	
DIR DIR FACTO	R 1	2	3	4	5	6
N/E 100	130	7183	2682	384	570	236
0	0	0	0	0	0	0
TOTAL 100	130	7183	2682	384	570	236
7	8	9	10	11	12	13
N/E 54	287	2149	12	8	1	0
0	0	0	0	0	0	0
TOTAL 54	287	2149	12	8	1	0
TOT 4-13	TOTAL(0)					
3701	13696					
0	0					
TOTAL 3701	13696					
R - RAW COUN	T READY FOR	CENTRAL OF	FICE REVIE	SW		
ACTION: I (A E	GHIJQI	R S T U X Y)				
MESSAGES:						

RMSRM466 H	ROADWAY MAI	NAGEMENT	INFORMAT	TION SYSTEM 04/11/2014 10:31:29
LTERM: NBAUER CU	JRRENT TRA	FFIC COUN	T DATA	(DIRECTIONAL)
COUNTY: 59 UNION				COUNT - KEY.: 54/0015/0071/0050
STATE ROUTE: 0015		BASE Y	R: 2011	- DATE: 11/17/2011
SEGMENT: 0011				- TYPE: MACHINE
OFFSET: 0000	BASE	CURRENT	% OF	- REF. NO: 2011362
FT: 1983 MI: 0	.376 YEAR	ESTIMATE	TOTAL	DIRECTION SOUTH
TOTAL VEHICLES (AD	r): 8732	8474		DURATION (HOURS): 24
TOTAL TRUCKS (ADTT).: 803	779		PERCENT TRUCKS: 09
3 AXLE W/TRL	: 64	62	8.0	TRAF PATTERN GROUP: 04
3 AXLE-MULTI AXLTH	RL: 353	343	44.0	DAILY - TOTAL VMT.: 3186
6 AXLE-SINGLE TRL	: 9	9	1.1	– TRUCK VMT.: 292
5 AXLE-MULTI TRL.	: 29	28	3.6	DESIGN HR VOL FACTORS
6 AXLE-MULTI TRL.	: 6	б	0.7	K: 8 D: 55 T: 7
7 AXLE-MULTI TRL.	: 4	4	0.5	TRAFFIC COUNT LIMITS
				CO -SR- SEG. OFF.
				FROM: 54 0015 0011 0000
				TO: 59 0015 0061 0570
WEEKDAY TRUCKS	: 1028	997		PARALLEL LIMITS
18K ESAL - RIGID	: 983	1203		FROM: 54 0015 0010 0000
- FLEXIBLI	E.: 679	817		TO: 59 0015 0060 0570

ACTION: I (A B E F G H I J L Q R S V W X Y) MESSAGES: PRESS PF10 TO DISPLAY PREVIOUS CLASSES

RMSRM466	ROAD	VAY MAI	IAGEMENT	INFORMAT	'ION SYSTEM 04/11/2014 10:26:57
LTERM: NBAUER	CURREI	NT TRAF	FIC COUN	T DATA	(DIRECTIONAL)
COUNTY: 59 UNIO	N				COUNT - KEY.: 54/0015/0071/0050
STATE ROUTE: 0015			BASE Y	R: 2011	– DATE: 11/17/2011
SEGMENT: 0011					- TYPE: MACHINE
OFFSET: 0000		BASE	CURRENT	% OF	- REF. NO: 2011362
FT: 1983 MI:	0.376	YEAR	ESTIMATE	TOTAL	DIRECTION: SOUTH
TOTAL VEHICLES (A	DT):	8732	8474		DURATION (HOURS): 24
TOTAL TRUCKS (ADT	T).:	803	779		PERCENT TRUCKS: 09
MOTORCYCLE	:	0	0	0.0	TRAF PATTERN GROUP: 04
CAR	:	6532	6339	75.0	DAILY - TOTAL VMT.: 3186
PICKUP/VAN	:	1397	1356	16.0	– TRUCK VMT.: 292
					DESIGN HR VOL FACTORS
BUS	:	80	78	10.0	K: 8 D: 55 T: 7
2 AXLE-SIX TIRE.	:	186	179	24.0	TRAFFIC COUNT LIMITS
3 AXLE-SINGLE UN	IT.:	48	46	6.0	CO -SR- SEG. OFF.
4 AXLE-SINGLE-UN	IT.:	24	24	3.0	FROM: 54 0015 0011 0000
					TO: 59 0015 0061 0570
WEEKDAY TRUCKS	:	1028	997		PARALLEL LIMITS
18K ESAL - RIGID.	:	983	1203		FROM: 54 0015 0010 0000
- FLEXIB	LE.:	679	817		TO: 59 0015 0060 0570

ACTION: I (A B E F G H I J L Q R S V W X Y) MESSAGES: PRESS PF11 TO DISPLAY MORE TRUCK CLASSES

RMSRM466 ROA	ADWAY MAI	NAGEMENT	INFORMAT	ION SYSTEM 04/11/2014 10:30:58			
LTERM: NBAUER CURRENT TRAFFIC COUNT DATA (DIRECTIONAL)							
COUNTY: 59 UNION COUNT - KEY.: 59/0015/0151/01							
STATE ROUTE: 0015		BASE Y	R: 2012	- DATE: 09/18/2012			
SEGMENT: 0071				- TYPE: MACHINE			
OFFSET: 0000	BASE	CURRENT	% OF	- REF. NO: 2012310			
FT: 1382 MI: 0.26	52 YEAR	ESTIMATE	TOTAL	DIRECTION: SOUTH			
TOTAL VEHICLES (ADT)	7862	7764		DURATION (HOURS): 24			
TOTAL TRUCKS (ADTT).	: 787	777		PERCENT TRUCKS: 10			
3 AXLE W/TRL	63	62	8.0	TRAF PATTERN GROUP: 03			
3 AXLE-MULTI AXLTRL	: 307	303	39.0	DAILY - TOTAL VMT.: 2034			
6 AXLE-SINGLE TRL	: 8	8	1.0	– TRUCK VMT.: 203			
5 AXLE-MULTI TRL	: 22	22	2.8	DESIGN HR VOL FACTORS			
6 AXLE-MULTI TRL	: 2	2	0.2	K: 10 D: 60 T: 8			
7 AXLE-MULTI TRL	: 2	2	0.2	TRAFFIC COUNT LIMITS			
				CO -SR- SEG. OFF.			
				FROM: 59 0015 0061 0570			
				TO: 59 0015 0181 0000			
WEEKDAY TRUCKS	: 1007	995		PARALLEL LIMITS			
18K ESAL - RIGID	925	1116		FROM: 59 0015 0060 0570			
- FLEXIBLE.	639	759		TO: 59 0015 0180 0000			

ACTION: I (A B E F G H I J L Q R S V W X Y) MESSAGES: PRESS PF10 TO DISPLAY PREVIOUS CLASSES

RMSRM466	ROADV	VAY MAN	NAGEMENT	INFORMAT	.'IC	ON SYSTI	EM	04/11/20	014 10	:28:08
LTERM: NBAUER	CURREI	IT TRAE	FIC COUN	T DATA	((DIRECT	IONA	L)		
COUNTY: 59 UNIC	N					COUNT ·	– KE	Y.: 59/0	015/01	.51/0130
STATE ROUTE: 0015			BASE YI	R: 2012			- DA'	ГЕ	: 09/1	8/2012
SEGMENT: 0071					_	-	- TY	PE	: MACH	IINE
OFFSET: 0000		BASE	CURRENT	% OF		-	- RE	F. NO	: 2012	2310
FT: 1382 MI:	0.262	YEAR	ESTIMATE	TOTAL		DIRECT	ION.		: SOUT	.'Н
TOTAL VEHICLES (A	DT):	7862	7764			DURATIO	ON (I	HOURS)	: 24	
TOTAL TRUCKS (ADI	Τ) .:	787	777			PERCEN	T TR	UCKS	: 10	
MOTORCYCLE	:	16	16	0.2		TRAF P	ATTE	RN GROUF	p: 03	
CAR	:	5722	5651	73.0		DAILY ·	- TO'	TAL VMT.	: 2	2034
PICKUP/VAN	:	1337	1320	17.0		-	- TR	UCK VMT.	:	203
						DES	SIGN	HR VOL	FACTOR	(S
BUS	:	94	93	12.0		K: 10		D: 60)	т: 8
2 AXLE-SIX TIRE.	:	227	223	29.0		TI	RAFF	IC COUNT	C LIMIT	'S
3 AXLE-SINGLE UN	IT.:	31	31	4.0			CO	-SR-	SEG.	OFF.
4 AXLE-SINGLE-UN	IT.:	31	31	4.0		FROM:	59	0015	0061	0570
						то:	59	0015	0181	0000
WEEKDAY TRUCKS	:	1007	995				PA	RALLEL I	JIMITS-	
18K ESAL - RIGID.	:	925	1116			FROM:	59	0015	0060	0570
- FLEXIE	BLE.:	639	759			то:	59	0015	0180	0000

ACTION: I (A B E F G H I J L Q R S V W X Y) MESSAGES: PRESS PF11 TO DISPLAY MORE TRUCK CLASSES

Appendix C Figures

Map Source: © 2011 National Geographic Society; Lewisburg (1973), Northumberland (1973), and Sunbury (1973), Pennsylvania Quadrangles

Appendix D

Warranted, Feasible, and Reasonable Worksheets

Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet – <u>Noise Wall</u>

Date	3	/25/2016			
Project Name		Project			
County	Union and Northumberland				
S.R., Section	S.R. 0015, Section 088				
Community Name and/or NSA #		NSA 2			
Noise Wall Identification (i.e., Wall 1)	NSA 2 C	ptimized Barri	ier		
General					
1. Type of project (new location, reconstruction, etc.):	Type I	(new roadway)		
2. Total number of impacted receptor units in community					
Category A units impacted		0			
Category B units impacted		2			
Category C units impacted		0			
Category D units impacted (if interior analysis required)		0			
Category E units impacted		0			
Warranted					
 Community Documentation Date community was permitted (for new developments or developments planned for or under construction) Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI): 	N/A				
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , <i>or FONSI</i> , <i>as</i> <i>appropriate</i> ."	X Yes		No		
 Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement. a. With the proposed project, are design year noise levels predicted to approach or exceed the NAC level(s) in Table 1? 	X Yes		No		
b. With the proposed project, is there predicted to be a substantial design year noise level increase of 10 dB(A) or more at Activity Category A, B, C, D, or E receptor(s)?c. With the proposed project, are design year noise levels predicted to be	Yes	X	No		
less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?	Yes	X	No		

Feasibility – Questions 1c through 7 must all be answered "yes" for a noise barrier to be determined to be feasible.

- 1. Impacted receptor units
 - a. Total number of impacted receptor units:

b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:

c. Is the percentage 50 or greater?

2. Can the noise wall be designed and physically constructed at the proposed location?

3. Can the noise wall be constructed without causing a safety problem?

4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?

5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?

6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?

7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?

Reasonableness

1. Community Desires Related to the Barrier

a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise

- 2. Square Footage Per Benefited Receptor (SF/BR) Evaluation
 - a. Area (SF) of the proposed noise wall

b. Number of benefited receptor units (any unit receiving 5 dB(A) or more insertion loss)

c. SF/BR = 2a/2b

d. Is 2c less than or equal to the MaxSF/BR value of 2000?

3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.

a. Does the noise wall reduce design year exterior_noise levels by at least 7 dB(A) for at least one benefited receptor?

b. Does the noise wall provide an insertion loss of at least 7 dB(A) for more receptors than required under 3a.while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns"

	2						
0%							
	Yes	X	No				
Χ	Yes		No				
Χ	Yes		No				
X	Yes		No				
X	Yes		No				
X	Yes		No				
X	Yes		No				

 c. Does the noise wall provide insertion losses of greater than 7 dB(A) while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation? d. Does the noise wall reduce future exterior levels to the low-60-decibel 		Yes	X	No
range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?		Yes	X	No
e. Does the noise wall reduce design year noise levels back to existing levels?	X	Yes		No
4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable.				
Question 4b represents a desirable goal that need not be met for a noise wall to be determined reasonable. However, this goal must be addressed and should be considered in the determination of the recommended noise wall.		N	/A	
a. Does noise wall reduce design year interior_noise levels by at least 7 dB(A) for the facility's analysis point?		Yes		No
b. While conforming to the MaxSF/BR criteria and justified by a "point of diminishing returns' evaluation, does the noise wall provide an interior insertion loss above the 7 dB(A) minimum		Yes		. No

on			
X	Yes	<u> </u>	No
	Yes	X	No
	Yes	X	No
	onX	on X Yes Yes Yes	on X Yes Yes X Yes Yes X Yes X Yes

Additional Reasons for Decision:

An optimized barrier extending 1,400 feet with an average height of 10.7 feet was identified to not be Feasible under the criteria established by PennDOT and FHWA within Publication 24. This barrier is not recommended for construction.

Responsible/Qualified Individuals Making the Above Decisions

PennDOT Engineering District 3-0

Frederick E. Schiller, Noise Specialist, A.D. Marble & Company

0-30-17 Date 3/25/2016

Date

Qualified Professional Performing the Analysis (name, title, and company name)

Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet – <u>Noise Wall</u>

Date	4/28/2016					
Project Name		Pro	ject			
County	Union and Northumberland					
S.R., Section	S.R. 0015, Section 088					
Community Name and/or NSA #		NS.	A 3			
Noise Wall Identification (i.e., Wall 1)		NSA 3 Optin	nized Barrie	er		
General						
1. Type of project (new location, reconstruction, etc.):		Type I (new	v roadway)			
2. Total number of impacted receptor units in community						
Category A units impacted		()			
Category B units impacted		1	0			
Category C units impacted		()			
Category D units impacted (if interior analysis required)		()			
Category E units impacted		()			
Warranted						
 Community Documentation Date community was permitted (for new developments or developments planned for or under construction) Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI): 		N/A N/A				
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , <i>or FONSI</i> , <i>as</i> <i>appropriate</i> ."	X	Yes		No		
 Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement. a. With the proposed project, are design year noise levels predicted to 		Vac	X	Nic		
b. With the proposed project, is there predicted to be a substantial design year noise level increase of 10 dB(A) or more at Activity Category A, B,	X	- Yes		No		
c. With the proposed project, are design year noise levels predicted to be less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?		Yes	X	No		

Feasibility – Questions 1c through 7 must all be answered "yes" for a noise barrier to be determined to be feasible.

- 1. Impacted receptor units
 - a. Total number of impacted receptor units:

b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:

c. Is the percentage 50 or greater?

2. Can the noise wall be designed and physically constructed at the proposed location?

3. Can the noise wall be constructed without causing a safety problem?

4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?

5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?

6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?

7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?

Reasonableness

1. Community Desires Related to the Barrier

a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise

- 2. Square Footage Per Benefited Receptor (SF/BR) Evaluation
 - a. Area (SF) of the proposed noise wall

b. Number of benefited receptor units (any unit receiving 5 dB(A) or more insertion loss)

c. SF/BR = 2a/2b

d. Is 2c less than or equal to the MaxSF/BR value of 2000?

3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.

a. Does the noise wall reduce design year exterior_noise levels by at least 7 dB(A) for at least one benefited receptor?

b. Does the noise wall provide an insertion loss of at least 7 dB(A) for more receptors than required under 3a.while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns"

	10	
	90%	
Χ	Yes	No
X	Yes	No
Χ	Yes	No
X	Yes	No
	N/A	

 c. Does the noise wall provide insertion losses of greater than 7 dB(A) while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation? d. Does the poise wall reduce future exterior levels to the low-60-decibel 	Yes	X	No
range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?	Yes	X	No
e. Does the noise wall reduce design year noise levels back to existing levels?	Yes	X	No
4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable. Question 4b represents a desirable goal that need not be met for a noise wall to be determined reasonable. However, this goal must be addressed and			
should be considered in the determination of the recommended noise wall.	N	/A	
 a. Does noise wall reduce design year interior_noise levels by at least 7 dB(A) for the facility's analysis point? b. While conforming to the MaxSF/BR criteria and justified by a "point" 	Yes		No
of diminishing returns' evaluation, does the noise wall provide an interior insertion loss above the 7 dB(A) minimum	Yes		No

on			
X	Yes		No
X	Yes	-	No
	Yes	X	No
	x X	X Yes X Yes Yes	X YesXYesYesX

Additional Reasons for Decision:

An optimized barrier system extending 3,400 feet with an average height of 24.7 feet was identified tobe Feasible, but not Reasonable under the criteria established by PennDOT and FHWA within Publication 24. This barrier is not recommended for construction.

Responsible/Qualified Individuals Making the Above Decisions

PennDOT Engineering District 3-0

Frederick E. Schiller, Noise Specialist, A.D. Marble & Company

<u>10 - 30 - 17</u> Date

4/28/2016 Date

Qualified Professional Performing the Analysis (name, title, and company name)

Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet – <u>Noise Wall</u>

Date	3/25/2016					
Project Name		Pro	ject			
County	U	nion and Nor	rthumberlan	d		
S.R., Section	S.R. 0015, Section 088					
Community Name and/or NSA #		NS	A 5			
Noise Wall Identification (i.e., Wall 1)]	NSA 5 Optin	nized Barrie	er		
General						
1. Type of project (new location, reconstruction, etc.):		Type I (new	v roadway)			
2. Total number of impacted receptor units in community						
Category A units impacted		()			
Category B units impacted		2	4			
Category C units impacted		()			
Category D units impacted (if interior analysis required)		()			
Category E units impacted		()			
Warranted						
 Community Documentation Date community was permitted (for new developments or developments planned for or under construction) Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI): 		N/A N/A				
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , <i>or FONSI</i> , <i>as appropriate</i> ."	X	Yes		No		
2. Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement. a. With the proposed project, are design year noise levels predicted to approach or exceed the NAC level(s) in Table 1?		Yes	X	No		
b. With the proposed project, is there predicted to be a substantial design year noise level increase of 10 dB(A) or more at Activity Category A, B, C, D, or E receptor(s)?c. With the proposed project, are design year noise levels predicted to be	X	Yes		No		
less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?		Yes	X	No		

Feasibility – Questions 1c through 7 must all be answered "yes" for a noise barrier to be determined to be feasible.

- 1. Impacted receptor units
 - a. Total number of impacted receptor units:

b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:

c. Is the percentage 50 or greater?

2. Can the noise wall be designed and physically constructed at the proposed location?

3. Can the noise wall be constructed without causing a safety problem?

4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?

5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?

6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?

7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?

Reasonableness

1. Community Desires Related to the Barrier

a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise

- 2. Square Footage Per Benefited Receptor (SF/BR) Evaluation
 - a. Area (SF) of the proposed noise wall

b. Number of benefited receptor units (any unit receiving 5 dB(A) or more insertion loss)

c. SF/BR = 2a/2b

d. Is 2c less than or equal to the MaxSF/BR value of 2000?

3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.

a. Does the noise wall reduce design year exterior_noise levels by at least 7 dB(A) for at least one benefited receptor?

b. Does the noise wall provide an insertion loss of at least 7 dB(A) for more receptors than required under 3a.while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns"

24					
4%					
	Yes	X	No		
X	Yes		No		
X	Yes		No		
X	Yes		No		
X	Yes		No		
X	Yes		No		
X	Yes		No		

c. Does the noise wall provide insertion losses of greater than 7 dB(A)
while still conforming to the MaxSF/BR value of 2,000 and a "point of
diminishing returns" evaluation?

d. Does the noise wall reduce future exterior levels to the low-60-decibel range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?

e. Does the noise wall reduce design year noise levels back to existing levels?

4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable. Question 4b represents a desirable goal that need not be met for a noise wall to be determined reasonable. However, this goal must be addressed and should be considered in the determination of the recommended noise wall.

a. Does noise wall reduce design year interior_noise levels by at least 7 dB(A) for the facility's analysis point?

b. While conforming to the MaxSF/BR criteria and justified by a "point of diminishing returns" evaluation, does the noise wall provide an interior insertion loss above the 7 dB(A) minimum

Yes X No Yes X No Yes X No

> N/A Yes No Yes No

X	Yes		No
-	Yes	X	No
	Yes	Х	No
	X	X Yes Yes Yes	X Yes Yes X Yes X

Additional Reasons for Decision:

An optimized barrier system extending 3,216 feet with an average height of 10.3 feet was identified to not be Feasible under the criteria established by PennDOT and FHWA within Publication 24. This barrier is not recommended for construction. See attached ERU calculations for the River Edge RV camp and marina.

Responsible/Qualified Individuals Making the Above Decisions

7.V

PennDOT Engineering District 3-0

Frederick E. Schiller, Noise Specialist, A.D. Marble & Company

30-Date 3/25/2016

Qualified Professional Performing the Analysis (name, title, and company name)

Date

		Seasonal	Residence
		Campground	(BASE)
А	Average Event Attendance		
В	Average Time Used by Each Person Per Event		
С	Average Number of Events Per Event Day		
D	Capacity of the Site		
E	Average Use Factor		
F	Hours Available Per Day		
G	Average Time Used by Each Person Per Day (Hours)	15.00	15.00
Н	Persons Using Per Day	78.12	2.48
Ι	Person-Hours Per Day (A x B x C) or (G x H)	1,171.80	37.20
J	Days Used Per Year	270	365
К	Person-Hours Used Per Year (I x J)	316,386.00	13,578.00
L	Equivalent Residential Units (ERU) = K / 13,578*	23.3	1
М	Grid Points Within Overall Land Use Activity Area	41	
Ν	Apply Specific Site's ERU Value to this Number of Points		
	Within 130' Grid		
О	Retain ERU Value of 1 for the Following Number of Points		
	Within 130' Grid		
Р	Apply This Value Equally to Each Grid Point in 130' Grid	0.57	

* Base Value representative of a typical residence in Pennsylvania

Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet – <u>Noise Wall</u>

Date	3/25/2016			
Project Name		Pro	ject	
County	U	Union and Northumberland		
S.R., Section	S.R. 0015, Section 088			
Community Name and/or NSA #	NSA 6			
Noise Wall Identification (i.e., Wall 1)	NSA 6 Optimized Barrier			
General				
1. Type of project (new location, reconstruction, etc.):		Type I (new roadway)		
2. Total number of impacted receptor units in community				
Category A units impacted		()	
Category B units impacted		6		
Category C units impacted		0		
Category D units impacted (if interior analysis required)		()	
Category E units impacted	0			
Warranted				
 Community Documentation Date community was permitted (for new developments or developments planned for or under construction) Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI): 		N/A N/A		
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , or <i>FONSI</i> , as appropriate ."	X	Yes		No
2. Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement. a. With the proposed project, are design year noise levels predicted to approach or exceed the NAC level(s) in Table 1?		Yes	X	No
b. With the proposed project, is there predicted to be a substantial design year noise level increase of 10 dB(A) or more at Activity Category A, B, C, D, or E receptor(s)?c. With the proposed project, are design year noise levels predicted to be	X	Yes		No
less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?		Yes	X	No
- 1. Impacted receptor units
 - a. Total number of impacted receptor units:

b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:

c. Is the percentage 50 or greater?

2. Can the noise wall be designed and physically constructed at the proposed location?

3. Can the noise wall be constructed without causing a safety problem?

4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?

5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?

6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?

7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?

Reasonableness

1. Community Desires Related to the Barrier

a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise

- 2. Square Footage Per Benefited Receptor (SF/BR) Evaluation
 - a. Area (SF) of the proposed noise wall

b. Number of benefited receptor units (any unit receiving 5 dB(A) or more insertion loss)

c. SF/BR = 2a/2b

d. Is 2c less than or equal to the MaxSF/BR value of 2000?

3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.

a. Does the noise wall reduce design year exterior_noise levels by at least 7 dB(A) for at least one benefited receptor?

6				
67%				
Χ	Yes		No	
X	Yes		No	
X	Yes		No	
X	Yes		No	
X	Yes		No	
X	Yes		No	
X	Yes		No	

 c. Does the noise wall provide insertion losses of greater than 7 dB(A) while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation? d. Does the poise wall reduce future exterior levels to the low-60-decibel 		Yes	X	No
range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?	X	Yes		No
e. Does the noise wall reduce design year noise levels back to existing levels?		Yes	Χ	No
4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable. Question 4b represents a desirable goal that need not be met for a noise wall				
to be determined reasonable. However, this goal must be addressed and should be considered in the determination of the recommended noise wall.		N	/A	
 a. Does noise wall reduce design year interior_noise levels by at least / dB(A) for the facility's analysis point? b. While conforming to the MaxSF/BR criteria and justified by a "point" 		Yes		No
of diminishing returns' evaluation, does the noise wall provide an interior insertion loss above the 7 dB(A) minimum	_	Yes		No

Decis	sion			
Is the Noise Wall WARRANTED?	X	Yes		No
Is the Noise Wall FEASIBLE?	X	Yes		No
Is the Noise Wall REASONABLE?	· · · · · · · · · · · · · · · · · · ·	Yes	X	No

An optimized barrier system extending 3,024 feet with an average height of 9.7 feet was identified to be Feasible, but not Reasonable under the criteria established by PennDOT and FHWA within Publication 24. This barrier is not recommended for construction.

Responsible/Qualified Individuals Making the Above Decisions

PennDOT Engineering District 3-0

Frederick E. Schiller, Noise Specialist, A.D. Marble & Company

Qualified Professional Performing the Analysis (name, title, and company name)

Date

3/25/2016 Date

Date		3/25/2010	6		
Project Name	Project				
County	Union and Northumberland				
S.R., Section	S.R. 0015, Section 088				
Community Name and/or NSA #		NSA 7			
Noise Wall Identification (i.e., Wall 1)]	NSA 7 Optimize	d Barrier		
General					
1. Type of project (new location, reconstruction, etc.):		Type I (new roa	adway)		
2. Total number of impacted receptor units in community					
Category A units impacted		0			
Category B units impacted		6			
Category C units impacted		0			
Category D units impacted (if interior analysis required)		0			
Category E units impacted		0			
Warranted					
 Community Documentation Date community was permitted (for new developments or developments planned for or under construction) Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI): 		N/A N/A			
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , <i>or FONSI</i> , <i>as</i> <i>appropriate</i> ."	X	Yes	No		
 Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement. a. With the proposed project, are design year noise levels predicted to 	v				
approach or exceed the NAC level(s) in Table 1? b. With the proposed project, is there predicted to be a substantial design	Δ	Yes	No		
year noise level increase of 10 dB(A) or more at Activity Category A, B,C, D, or E receptor(s)?c. With the proposed project, are design year noise levels predicted to be	X	Yes	No		
less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?		Yes	X No		

- 1. Impacted receptor units
 - a. Total number of impacted receptor units:

b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:

c. Is the percentage 50 or greater?

2. Can the noise wall be designed and physically constructed at the proposed location?

3. Can the noise wall be constructed without causing a safety problem?

4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?

5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?

6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?

7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?

Reasonableness

1. Community Desires Related to the Barrier

a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise

- 2. Square Footage Per Benefited Receptor (SF/BR) Evaluation
 - a. Area (SF) of the proposed noise wall

b. Number of benefited receptor units (any unit receiving 5 dB(A) or more insertion loss)

c. SF/BR = 2a/2b

d. Is 2c less than or equal to the MaxSF/BR value of 2000?

3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.

a. Does the noise wall reduce design year exterior_noise levels by at least 7 dB(A) for at least one benefited receptor?

6				
17%				
	Yes	X	No	
Χ	Yes		No	
X	Yes		No	
X	Yes		No	
X	Yes		No	
X	Yes		No	
X	Yes		No	

c. Does the noise wall provide insertion losses of greater than 7 dB(A) while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?	Yes	X	No
d. Does the noise wall reduce future exterior levels to the low-60-decider range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?	Yes	X	No
e. Does the noise wall reduce design year noise levels back to existing levels?	Yes	X	No
4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable. Question 4b represents a desirable goal that need not be met for a noise wall to be determined reasonable. However, this goal must be addressed and			
should be considered in the determination of the recommended noise wall.	N	/A	
 a. Does noise wall reduce design year interior_noise levels by at least 7 dB(A) for the facility's analysis point? b. While conforming to the MaxSF/BR criteria and justified by a "point" 	Yes		No
of diminishing returns' evaluation, does the noise wall provide an interior insertion loss above the 7 dB(A) minimum	Yes		No

Dec	ision			
Is the Noise Wall WARRANTED?	X	Yes	<u></u>	No
Is the Noise Wall FEASIBLE?		Yes	X	No
Is the Noise Wall REASONABLE?		Yes	X	No
Additional Reasons for Decision:				

An optimized barrier system extending 1,344 feet with an average height of 14.3 feet was identified to not be Feasible under the criteria established by PennDOT and FHWA within Publication 24. This barrier is not recommended for construction.

Responsible/Qualified Individuals Making the Above Decisions

0-30-17 PennDOT Engineering District 3-0 Date 3/25/2016 Frederick E. Schiller, Noise Specialist, A.D. Marble & Company Qualified Professional Performing the Analysis Date (name, title, and company name)

Date	3/25/2016			
Project Name	Project			
County	Union and Northumberland			
S.R., Section	S.R. 0015, Section 088			
Community Name and/or NSA #	NSA 8			
Noise Wall Identification (i.e., Wall 1)	NSA 8 Optimized	Barrier		
General				
1. Type of project (new location, reconstruction, etc.):	Type I (new road	lway)		
2. Total number of impacted receptor units in community				
Category A units impacted	0			
Category B units impacted	1			
Category C units impacted	0			
Category D units impacted (if interior analysis required)	0			
Category E units impacted	0			
Warranted				
 Community Documentation Date community was permitted (for new developments or developments planned for or under construction) Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI): 	N/A			
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , <i>or FONSI</i> , <i>as</i> <i>appropriate</i> ."	X Yes	No		
 Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement. a. With the proposed project, are design year noise levels predicted to approach or exceed the NAC level(s) in Table 1? 	X Yes	No		
b. With the proposed project, is there predicted to be a substantial design year noise level increase of 10 dB(A) or more at Activity Category A, B, C, D, or E receptor(s)?c. With the proposed project, are design year noise levels predicted to be	Yes 2	X No		
less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?	Yes 2	K No		

- 1. Impacted receptor units
 - a. Total number of impacted receptor units:

b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:

c. Is the percentage 50 or greater?

2. Can the noise wall be designed and physically constructed at the proposed location?

3. Can the noise wall be constructed without causing a safety problem?

4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?

5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?

6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?

7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?

Reasonableness

1. Community Desires Related to the Barrier

a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise

- 2. Square Footage Per Benefited Receptor (SF/BR) Evaluation
 - a. Area (SF) of the proposed noise wall

b. Number of benefited receptor units (any unit receiving 5 dB(A) or more insertion loss)

c. SF/BR = 2a/2b

d. Is 2c less than or equal to the MaxSF/BR value of 2000?

3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.

a. Does the noise wall reduce design year exterior_noise levels by at least 7 dB(A) for at least one benefited receptor?

		1	
_	(0%	
	Yes	X	No
Χ	Yes		No
X	Yes		No

 c. Does the noise wall provide insertion losses of greater than 7 dB(A) while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation? d. Does the noise wall reduce future exterior levels to the low-60-decibel 	Yes	X	No
range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?	Yes	X	No
e. Does the noise wall reduce design year noise levels back to existing levels?	Yes	X	No
4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable.			
Question 4b represents a desirable goal that need not be met for a noise wall to be determined reasonable. However, this goal must be addressed and	N	Δ	
a. Does noise wall reduce design year interior_noise levels by at least 7 dB(A) for the facility's analysis point?	Yes		No
b. While conforming to the MaxSF/BR criteria and justified by a "point of diminishing returns' evaluation, does the noise wall provide an interior insertion loss above the 7 dB(A) minimum	Yes	-	No

Decisio	on			
Is the Noise Wall WARRANTED?	X	Yes		No
Is the Noise Wall FEASIBLE?	<u></u>	Yes	X	No
Is the Noise Wall REASONABLE?	· · · · · ·	Yes	X	No

An optimized barrier system extending 1,081 feet with an average height of 13.2 feet was identified to not be Feasible under the criteria established by PennDOT and FHWA within Publication 24. This barrier is not recommended for construction.

Responsible/Qualified Individuals Making the Above Decisions

PennDOT Engineering District 3-0

Frederick E. Schiller, Noise Specialist, A.D. Marble & Company Qualified Professional Performing the Analysis

(name, title, and company name)

-30 Date

3/25/2016 Date

Date	3/25/2016				
Project Name	Project				
County	Union and Northumberland			d	
S.R., Section	S.R. 0015, Section 088				
Community Name and/or NSA #		NSA	9		
Noise Wall Identification (i.e., Wall 1)	-	NSA 9 Optimi	zed Barrie	er	
General					
1. Type of project (new location, reconstruction, etc.):		Type I (new	roadway)		
2. Total number of impacted receptor units in community					
Category A units impacted		0			
Category B units impacted		6			
Category C units impacted		0			
Category D units impacted (if interior analysis required)		0			
Category E units impacted		0			
Warranted					
 Community Documentation Date community was permitted (for new developments or developments planned for or under construction) Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI): 		N/A N/A			
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , <i>or FONSI</i> , <i>as</i> <i>appropriate</i> ."	X	Yes		No	
 Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement. a. With the proposed project, are design year noise levels predicted to approach or exceed the NAC level(s) in Table 1? 	X	Yes		No	
b. With the proposed project, is there predicted to be a substantial design year noise level increase of 10 dB(A) or more at Activity Category A, B, C, D, or E receptor(s)?c. With the proposed project, are design year noise levels predicted to be	X	Yes		No	
less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?		Yes	X	No	

- 1. Impacted receptor units
 - a. Total number of impacted receptor units:

b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:

c. Is the percentage 50 or greater?

2. Can the noise wall be designed and physically constructed at the proposed location?

3. Can the noise wall be constructed without causing a safety problem?

4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?

5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?

6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?

7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?

Reasonableness

1. Community Desires Related to the Barrier

a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise

- 2. Square Footage Per Benefited Receptor (SF/BR) Evaluation
 - a. Area (SF) of the proposed noise wall

b. Number of benefited receptor units (any unit receiving 5 dB(A) or more insertion loss)

c. SF/BR = 2a/2b

d. Is 2c less than or equal to the MaxSF/BR value of 2000?

3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.

a. Does the noise wall reduce design year exterior_noise levels by at least 7 dB(A) for at least one benefited receptor?

Χ	Yes	No
Χ	Yes	No
Χ	Yes	No
X	Yes	No
	N/A	

 c. Does the noise wall provide insertion losses of greater than 7 dB(A) while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation? d. Does the noise wall reduce future exterior levels to the low-60-decibel 		Yes	X	No
range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?	X	Yes		No
e. Does the noise wall reduce design year noise levels back to existing levels?		Yes	X	No
4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable.				
to be determined reasonable. However, this goal must be addressed and				
should be considered in the determination of the recommended noise wall. a. Does noise wall reduce design year interior_noise levels by at least 7 dB(A) for the facility's analysis point?		Yes	/A	No
b. While conforming to the MaxSF/BR criteria and justified by a "point of diminishing returns' evaluation, does the noise wall provide an interior insertion loss above the 7 dB(A) minimum		Yes		No
 Alternative and entry of the second state of the seco	1		1	20 a

Deci	sion			
Is the Noise Wall WARRANTED?	X	Yes		No
Is the Noise Wall FEASIBLE?	X	Yes		No
Is the Noise Wall REASONABLE?		Yes	X	No

An optimized barrier system extending 2,688 feet with an average height of 16.4 feet was identified to be Feasible, but not Reasonable under the criteria established by PennDOT and FHWA within Publication 24. This barrier is not recommended for construction.

Responsible/Qualified Individuals Making the Above Decisions

PennDOT Engineering District 3-0

Frederick E. Schiller, Noise Specialist, A.D. Marble & Company Qualified Professional Performing the Analysis

-30-Date

3/25/2016 Date

(name, title, and company name)

Date		3/25/2	016		
Project Name		Project			
County	U	Union and Northumberland			
S.R., Section	S.R. 0015, Section 088				
Community Name and/or NSA #		NSA 12			
Noise Wall Identification (i.e., Wall 1)		N/A	ł		
General					
1. Type of project (new location, reconstruction, etc.):		Type I (new	roadway)		
2. Total number of impacted receptor units in community					
Category A units impacted		0			
Category B units impacted		4			
Category C units impacted		0			
Category D units impacted (if interior analysis required)		0			
Category E units impacted		0			
Warranted					
 Community Documentation Date community was permitted (for new developments or developments planned for or under construction) Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI): 		N/A N/A			
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , or <i>FONSI</i> , as appropriate ."	X	Yes		No	
 Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement. a. With the proposed project, are design year noise levels predicted to approach or exceed the NAC level(s) in Table 12 	X	Yes		No	
b. With the proposed project, is there predicted to be a substantial design year noise level increase of 10 dB(A) or more at Activity Category A, B, C, D, or E receptor(s)?		Yes	X	No	
c. With the proposed project, are design year noise levels predicted to be less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?		Yes	X	No	

- 1. Impacted receptor units
 - a. Total number of impacted receptor units:

b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:

c. Is the percentage 50 or greater?

2. Can the noise wall be designed and physically constructed at the proposed location?

3. Can the noise wall be constructed without causing a safety problem?

4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?

5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?

6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?

7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?

Reasonableness

1. Community Desires Related to the Barrier

a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise

- 2. Square Footage Per Benefited Receptor (SF/BR) Evaluation
 - a. Area (SF) of the proposed noise wall

b. Number of benefited receptor units (any unit receiving 5 dB(A) or more insertion loss)

c. SF/BR = 2a/2b

d. Is 2c less than or equal to the MaxSF/BR value of 2000?

3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.

a. Does the noise wall reduce design year exterior_noise levels by at least 7 dB(A) for at least one benefited receptor?

b. Does the noise wall provide an insertion loss of at least 7 dB(A) for more receptors than required under 3a.while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns"

		4				
0%						
	Yes	X	No			
	Yes	X	No			
	Yes	X	No			
	Yes	X	No			
X	Yes		No			
X	Yes		No			
X	Yes		No			

N/A

c. Does the noise wall provide insertion losses of greater than 7 dB(A) while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?	Yes	X	No
d. Does the noise wall reduce future exterior levels to the low-oo-decider range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?	Yes	X	No
e. Does the noise wall reduce design year noise levels back to existing levels?	Yes	X	No
4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable. Question 4b represents a desirable goal that need not be met for a noise wall to be determined reasonable. However, this goal must be addressed and			
should be considered in the determination of the recommended noise wall.	N	/A	
 a. Does noise wall reduce design year interior_noise levels by at least 7 dB(A) for the facility's analysis point? b. While conforming to the MaxSE/BR criteria and justified by a "point" 	Yes		No
of diminishing returns' evaluation, does the noise wall provide an interior insertion loss above the 7 dB(A) minimum	Yes		No

Decisio	n	-	
Is the Noise Wall WARRANTED?	X Yes		No
Is the Noise Wall FEASIBLE?	Yes	X	No
Is the Noise Wall REASONABLE?	Yes	X	No

All impacts identified for NSA 12 originate from the existing S.R. 0147 roadway, and not as a result of the proposed roadways. No barrier could be designed that would not restrict the necessary direct driveway access between the impacted properties and the S.R. 0147 roadway. A barrier is not recommended for construction.

Responsible/Qualified Individuals Making the Above Decisions

V

PennDOT Engineering District 3-0

Frederick E. Schiller, Noise Specialist, A.D. Marble & Company

Qualified Professional Performing the Analysis (name, title, and company name)

30-Date

3/25/2016 Date

Date		3/25/	2016			
Project Name	Project					
County	Union and Northumberland			nd		
S.R., Section	S.R. 0015, Section 088					
Community Name and/or NSA #		NSA	A 14			
Noise Wall Identification (i.e., Wall 1)	N	NSA 14 Optii	mized Barri	er		
General						
1. Type of project (new location, reconstruction, etc.):		Type I (new	v roadway)			
2. Total number of impacted receptor units in community						
Category A units impacted		()			
Category B units impacted		2	2			
Category C units impacted		()			
Category D units impacted (if interior analysis required)		()			
Category E units impacted		()			
Warranted						
 Community Documentation Date community was permitted (for new developments or developments planned for or under construction) Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI): 		N/A N/A				
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , <i>or FONSI</i> , <i>as</i> <i>appropriate</i> ."	X	Yes		No		
2. Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement.						
a. With the proposed project, are design year noise levels predicted to approach or exceed the NAC level(s) in Table 1?b. With the proposed project, is there predicted to be a substantial design		Yes	X	No		
year noise level increase of 10 dB(A) or more at Activity Category A, B, C, D, or E receptor(s)?	X	Yes		No		
less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?		Yes	X	No		

- 1. Impacted receptor units
 - a. Total number of impacted receptor units:

b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:

c. Is the percentage 50 or greater?

2. Can the noise wall be designed and physically constructed at the proposed location?

3. Can the noise wall be constructed without causing a safety problem?

4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?

5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?

6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?

7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?

Reasonableness

1. Community Desires Related to the Barrier

a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise

- 2. Square Footage Per Benefited Receptor (SF/BR) Evaluation
 - a. Area (SF) of the proposed noise wall

b. Number of benefited receptor units (any unit receiving 5 dB(A) or more insertion loss)

c. SF/BR = 2a/2b

d. Is 2c less than or equal to the MaxSF/BR value of 2000?

3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.

a. Does the noise wall reduce design year exterior_noise levels by at least 7 dB(A) for at least one benefited receptor?

	2		
Ye	es	Χ	No
Ye	es	X	No
Ye	es	Χ	No
Ye	es	X	No
Ye	es	X	No
Ye	es	X	No
Ye	es	X	No
	N/A		
	1011		

 c. Does the noise wall provide insertion losses of greater than 7 dB(A) while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation? d. Does the noise wall reduce future exterior levels to the low-60-decibel 	Yes	X	No
range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?	Yes	X	No
e. Does the noise wall reduce design year noise levels back to existing levels?	Yes	X	No
4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable. Question 4b represents a desirable goal that need not be met for a noise wall			
to be determined reasonable. However, this goal must be addressed and should be considered in the determination of the recommended noise wall.	N	Ά	
dB(A) for the facility's analysis point?	Yes		No
of diminishing returns' evaluation, does the noise wall provide an interior insertion loss above the 7 dB(A) minimum	Yes	<u></u>	No

	Decision				
Is the Noise Wall WARRANTED?		X	Yes		No
Is the Noise Wall FEASIBLE?			Yes	X	No
Is the Noise Wall REASONABLE?			Yes	X	No

An optimized barrier system extending 1,776 feet with an average height of 17.8 feet was identified to not be Feasible under the criteria established by PennDOT and FHWA within Publication 24. This barrier is not recommended for construction.

Responsible/Qualified Individuals Making the Above Decisions

PennDOT Engineering District 3-0

Frederick E. Schiller, Noise Specialist, A.D. Marble & Company

<u>/0-30-17</u> Date

3/25/2016 Date

Qualified Professional Performing the Analysis (name, title, and company name)

Date		3/25/2010	6		
Project Name		Project			
County	Union and Northumberland				
S.R., Section	S.R. 0015, Section 088				
Community Name and/or NSA #	NSA 17				
Noise Wall Identification (i.e., Wall 1)	N	NSA 17 Optimize	ed Barrier		
General					
1. Type of project (new location, reconstruction, etc.):		Type I (new roa	adway)		
2. Total number of impacted receptor units in community					
Category A units impacted		0			
Category B units impacted		4			
Category C units impacted		0			
Category D units impacted (if interior analysis required)		0			
Category E units impacted		0			
Warranted					
 Community Documentation Date community was permitted (for new developments or developments planned for or under construction) Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI): 		N/A N/A			
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , <i>or FONSI</i> , <i>as</i> <i>appropriate</i> ."	X	Yes		No	
2. Criteria requiring consideration of noise abatement (note N/A if category is					
not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement. a. With the proposed project, are design year noise levels predicted to approach or exceed the NAC level(s) in Table 1?	X	Yes		No	
 b. With the proposed project, is there predicted to be a substantial design year noise level increase of 10 dB(A) or more at Activity Category A, B, C, D, or E receptor(s)? c. With the proposed project, are design year noise levels predicted to be 	X	Yes		No	
less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?		Yes	X	No	

- 1. Impacted receptor units
 - a. Total number of impacted receptor units:

b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:

c. Is the percentage 50 or greater?

2. Can the noise wall be designed and physically constructed at the proposed location?

3. Can the noise wall be constructed without causing a safety problem?

4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?

5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?

6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?

7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?

Reasonableness

1. Community Desires Related to the Barrier

a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise

- 2. Square Footage Per Benefited Receptor (SF/BR) Evaluation
 - a. Area (SF) of the proposed noise wall

b. Number of benefited receptor units (any unit receiving 5 dB(A) or more insertion loss)

c. SF/BR = 2a/2b

d. Is 2c less than or equal to the MaxSF/BR value of 2000?

3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.

a. Does the noise wall reduce design year exterior noise levels by at least 7 dB(A) for at least one benefited receptor?

b. Does the noise wall provide an insertion loss of at least 7 dB(A) for more receptors than required under 3a.while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns"

		4			
0%					
	Yes	X	No		
Χ	Yes		No		
X	Yes		No		
Χ	Yes		No		
X	Yes		No		
X	Yes		No		
X	Yes		No		

No

c. Does the noise wall provide insertion losses of greater than 7 dB(A) while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?	Yes	X	No
d. Does the noise wall reduce future exterior levels to the low-60-decibel range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?	Yes	X	No
e. Does the noise wall reduce design year noise levels back to existing levels?	Yes	X	No
4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable. Question 4b represents a desirable goal that need not be met for a noise wall			
to be determined reasonable. However, this goal must be addressed and should be considered in the determination of the recommended noise wall.	N/	Ά	
dB(A) for the facility's analysis point? b. While conforming to the MaxSF/BR criteria and justified by a "point	Yes	_	No
of diminishing returns' evaluation, does the noise wall provide an interior insertion loss above the 7 $dB(A)$ minimum	Yes		No

	Decision				
Is the Noise Wall WARRANTED?		X	Yes		No
Is the Noise Wall FEASIBLE?		<u></u>	Yes	X	No
Is the Noise Wall REASONABLE?			Yes	X	No

An optimized barrier system extending 2,736 feet with an average height of 12.0 feet was identified to not be Feasible under the criteria established by PennDOT and FHWA within Publication 24. This barrier is not recommended for construction.

Responsible/Qualified Individuals Making the Above Decisions

PennDOT Engineering District 3-0

Frederick E. Schiller, Noise Specialist, A.D. Marble & Company

Qualified Professional Performing the Analysis (name, title, and company name)

30 Date

3/25/2016 Date

Date		3/25/	2016			
Project Name		Proj	ect			
County	Union and Northumberland					
S.R., Section	S.R. 0015, Section 088					
Community Name and/or NSA #		NSA	. 18			
Noise Wall Identification (i.e., Wall 1)	l	NSA 18 Optii	nized Barri	er		
General						
1. Type of project (new location, reconstruction, etc.):	Type I (new roadway)					
2. Total number of impacted receptor units in community						
Category A units impacted		0				
Category B units impacted		1				
Category C units impacted		0				
Category D units impacted (if interior analysis required)		0				
Category E units impacted		0				
Warranted						
 Community Documentation Date community was permitted (for new developments or developments planned for or under construction) Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI); 		N/A N/A				
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , or <i>FONSI</i> , as appropriate ."	X	Yes		No		
2. Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement. a. With the proposed project, are design year noise levels predicted to approach or exceed the NAC level(s) in Table 1?		Yes	X	No		
b. With the proposed project, is there predicted to be a substantial design year noise level increase of 10 dB(A) or more at Activity Category A, B, C, D, or E receptor(s)?c. With the proposed project, are design year noise levels predicted to be	X	Yes		No		
less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?		Yes	X	No		

- 1. Impacted receptor units
 - a. Total number of impacted receptor units:

b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:

c. Is the percentage 50 or greater?

2. Can the noise wall be designed and physically constructed at the proposed location?

3. Can the noise wall be constructed without causing a safety problem?

4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?

5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?

6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?

7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?

Reasonableness

1. Community Desires Related to the Barrier

a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise

- 2. Square Footage Per Benefited Receptor (SF/BR) Evaluation
 - a. Area (SF) of the proposed noise wall

b. Number of benefited receptor units (any unit receiving 5 dB(A) or more insertion loss)

c. SF/BR = 2a/2b

d. Is 2c less than or equal to the MaxSF/BR value of 2000?

3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.

a. Does the noise wall reduce design year exterior_noise levels by at least 7 dB(A) for at least one benefited receptor?

1					
100%					
Χ	Yes		No		
X	Yes		No		
X	Yes		Νο		
X	Yes		No		
X	Yes		No		
X	Yes		No		
X	Yes		No		

 c. Does the noise wall provide insertion losses of greater than 7 dB(A) while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation? d. Does the noise wall reduce future exterior levels to the low-60-decibel 		Yes	X	No
range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?	X	Yes		No
e. Does the noise wall reduce design year noise levels back to existing levels?		Yes	X	No
4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable. Question 4b represents a desirable goal that need not be met for a noise wall to be determined reasonable. However, this goal must be addressed and				
should be considered in the determination of the recommended noise wall.		N	/A	
a. Does noise wall reduce design year interior_noise levels by at least / dB(A) for the facility's analysis point?b. While conforming to the MaxSF/BR criteria and justified by a "point"		Yes	-	No
of diminishing returns' evaluation, does the noise wall provide an interior insertion loss above the 7 dB(A) minimum	<u> </u>	Yes		No

Decis	sion			
Is the Noise Wall WARRANTED?	X	Yes		No
Is the Noise Wall FEASIBLE?	X	Yes		No
Is the Noise Wall REASONABLE?		Yes	X	No

An optimized barrier system extending 1,008 feet with an average height of 19.2 feet was identified to be Feasible, but not Reasonable under the criteria established by PennDOT and FHWA within Publication 24. This barrier is not recommended for construction.

Responsible/Qualified Individuals Making the Above Decisions

PennDOT Engineering District 3-0

Frederick E. Schiller, Noise Specialist, A.D. Marble & Company

Qualified Professional Performing the Analysis (name, title, and company name)

30-1 Date

3/25/2016 Date

Date		3/25/2	016			
Project Name	Project					
County	Union and Northumberland			d		
S.R., Section	S.R. 0015, Section 088					
Community Name and/or NSA #		NSA	19			
Noise Wall Identification (i.e., Wall 1)	1	NSA 19 Optim	ized Barrie	er		
General						
1. Type of project (new location, reconstruction, etc.):		Type I (new	roadway)			
2. Total number of impacted receptor units in community						
Category A units impacted		0				
Category B units impacted		4				
Category C units impacted		0				
Category D units impacted (if interior analysis required)		0				
Category E units impacted		0				
Warranted						
 Community Documentation Date community was permitted (for new developments or developments planned for or under construction) Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI): 		N/A N/A				
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , <i>or FONSI</i> , <i>as appropriate</i> ."	X	Yes		No		
 Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement. a. With the proposed project, are design year noise levels predicted to approach or exceed the NAC level(s) in Table 1? 	X	Yes		No		
b. With the proposed project, is there predicted to be a substantial design year noise level increase of 10 dB(A) or more at Activity Category A, B, C, D, or E receptor(s)?c. With the proposed project, are design year noise levels predicted to be	X	Yes		No		
less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?		Yes	X	No		

- 1. Impacted receptor units
 - a. Total number of impacted receptor units:

b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:

c. Is the percentage 50 or greater?

2. Can the noise wall be designed and physically constructed at the proposed location?

3. Can the noise wall be constructed without causing a safety problem?

4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?

5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?

6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?

7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?

Reasonableness

1. Community Desires Related to the Barrier

a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise

- 2. Square Footage Per Benefited Receptor (SF/BR) Evaluation
 - a. Area (SF) of the proposed noise wall

b. Number of benefited receptor units (any unit receiving 5 dB(A) or more insertion loss)

c. SF/BR = 2a/2b

d. Is 2c less than or equal to the MaxSF/BR value of 2000?

3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.

a. Does the noise wall reduce design year exterior_noise levels by at least 7 dB(A) for at least one benefited receptor?

	4	
	75%	
X	Yes	No
X	Yes	No
Χ	Yes	No
X	Yes	No
	N/A	
	Yes	No

	Yes	X	No
X	Yes		No
	Yes	X	No
	N	/A	
_	Yes		No
	Yes		No
	X	X Yes X Yes Yes Ves Yes	Yes X X Yes X Yes X N/A Yes

Decision				
Decision				
	X	Yes		No
	X	Yes		No
		Yes	X	No
	Decision	Decision X	Decision X Yes X Yes Yes Yes	Decision X Yes X Yes Yes X

An optimized barrier system extending 1,920 feet with an average height of 21.6 feet was identified to be Feasible, but not Reasonable under the criteria established by PennDOT and FHWA within Publication 24. This barrier is not recommended for construction.

Responsible/Qualified Individuals Making the Above Decisions

PennDOT Engineering District 3-0

Frederick E. Schiller, Noise Specialist, A.D. Marble & Company

Date

3/25/2016 Date

Qualified Professional Performing the Analysis (name, title, and company name)

Date		3/25/2	016	
Project Name	Project			
County	Union and Northumberland			d
S.R., Section		S.R. 0015, Section 088		
Community Name and/or NSA #		NSA	20	
Noise Wall Identification (i.e., Wall 1)	1	NSA 20 Optim	ized Barrie	er
General				
1. Type of project (new location, reconstruction, etc.):		Type I (new	roadway)	
2. Total number of impacted receptor units in community				
Category A units impacted		0		
Category B units impacted		3		
Category C units impacted		0		
Category D units impacted (if interior analysis required)		0		
Category E units impacted		0		
Warranted				
 Community Documentation Date community was permitted (for new developments or developments planned for or under construction) Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI): Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Itam 2. If no consideration of poise shotement is not 		N/A N/A	Δ	
warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , <i>or FONSI</i> , <i>as</i> <i>appropriate</i> ."	X	Yes		No
 Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement. a. With the proposed project, are design year noise levels predicted to 	v			
approach or exceed the NAC level(s) in Table 1?	Λ	Yes –		No
year noise level increase of 10 dB(A) or more at Activity Category A, B, C, D, or E receptor(s)?	X	Yes		No
less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?		Yes	X	No

- 1. Impacted receptor units
 - a. Total number of impacted receptor units:

b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:

c. Is the percentage 50 or greater?

2. Can the noise wall be designed and physically constructed at the proposed location?

3. Can the noise wall be constructed without causing a safety problem?

4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?

5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?

6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?

7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?

Reasonableness

1. Community Desires Related to the Barrier

a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise

- 2. Square Footage Per Benefited Receptor (SF/BR) Evaluation
 - a. Area (SF) of the proposed noise wall

b. Number of benefited receptor units (any unit receiving 5 dB(A) or more insertion loss)

c. SF/BR = 2a/2b

d. Is 2c less than or equal to the MaxSF/BR value of 2000?

3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.

a. Does the noise wall reduce design year exterior_noise levels by at least 7 dB(A) for at least one benefited receptor?

3			
33%			
	Yes	X	No
Χ	Yes		No
X	Yes		No

 c. Does the noise wall provide insertion losses of greater than 7 dB(A) while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation? d. Does the noise wall reduce future exterior levels to the low-60-decibel 	Yes	X	No
range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?	Yes	X	No
e. Does the noise wall reduce design year noise levels back to existing levels?	Yes	X	No
4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable. Question 4b represents a desirable goal that need not be met for a noise wall to be determined reasonable. However, this goal must be addressed and			
should be considered in the determination of the recommended noise wall.	N	/A	
 a. Does noise wall reduce design year interior_noise levels by at least 7 dB(A) for the facility's analysis point? b. While conforming to the MaxSF/BR criteria and justified by a "point" 	Yes		No
of diminishing returns' evaluation, does the noise wall provide an interior insertion loss above the 7 dB(A) minimum	Yes	_	No

De	ecision	
Is the Noise Wall WARRANTED?	X Yes	No
Is the Noise Wall FEASIBLE?	Yes X	No
Is the Noise Wall REASONABLE?	Yes X	No

An optimized barrier system extending 1,248 feet with an average height of 22.1 feet was identified to not be Feasible under the criteria established by PennDOT and FHWA within Publication 24. This barrier is not recommended for construction.

Responsible/Qualified Individuals Making the Above Decisions

V

PennDOT Engineering District 3-0

Frederick E. Schiller, Noise Specialist, A.D. Marble & Company

Date

3/25/2016 Date

Qualified Professional Performing the Analysis (name, title, and company name)

Date	3/25/20	16	
Project Name	Projec	t	
County	Union and North	umberland	
S.R., Section	S.R. 0015, Sec	tion 088	
Community Name and/or NSA #	NSA 2	2	
Noise Wall Identification (i.e., Wall 1)	NSA 22 Optimiz	ed Barrier	
General			
1. Type of project (new location, reconstruction, etc.):	Type I (new re	badway)	
2. Total number of impacted receptor units in community			
Category A units impacted	0		
Category B units impacted	6		
Category C units impacted	0		
Category D units impacted (if interior analysis required)	0		
Category E units impacted	0		
Warranted			
 Community Documentation Date community was permitted (for new developments or developments planned for or under construction) Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI): 	N/A N/A		
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of <i>CE</i> , <i>ROD</i> , or <i>FONSI</i> , as appropriate ."	X Yes	No	
2. Criteria requiring consideration of noise abatement (note N/A if category is not impacted or present or analysis not required). A "yes" answer to any of the following three questions requires the consideration of noise abatement. a. With the proposed project, are design year noise levels predicted to approach or exceed the NAC level(s) in Table 1?	X Yes	No	
b. With the proposed project, is there predicted to be a substantial design year noise level increase of 10 dB(A) or more at Activity Category A, B, C, D, or E receptor(s)?c. With the proposed project, are design year noise levels predicted to be	Yes	X No	
less than existing noise levels, but still approach or exceed the NAC levels in Table 1 for the relevant Activity Category?	Yes	X No	

- 1. Impacted receptor units
 - a. Total number of impacted receptor units:

b. Percentage of impacted receptor units receiving 5 dB(A) or more insertion loss:

c. Is the percentage 50 or greater?

2. Can the noise wall be designed and physically constructed at the proposed location?

3. Can the noise wall be constructed without causing a safety problem?

4. Can the noise wall be constructed without restricting access to vehicular or pedestrian travel?

5. Can the noise wall be constructed in a manner that allows for access for required maintenance and inspection operations?

6. Can the noise wall be constructed in a manner that permits utilities to function in a normal manner?

7. Can the noise wall be constructed in a manner that permits drainage features to function in a normal manner?

Reasonableness

1. Community Desires Related to the Barrier

a. Do at least 50 percent of the responding benefited receptor unit owner(s) and renters desire the noise wall? If yes, continue with Reasonableness questions. If no, the noise wall can be considered not to be reasonable. Proceed to "Decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the benefited receptor unit owners do not desire the noise

- 2. Square Footage Per Benefited Receptor (SF/BR) Evaluation
 - a. Area (SF) of the proposed noise wall

b. Number of benefited receptor units (any unit receiving 5 dB(A) or more insertion loss)

c. SF/BR = 2a/2b

d. Is 2c less than or equal to the MaxSF/BR value of 2000?

3. Noise Reduction Design Goals (Activity Categories A, B, C, and E) A "yes" answer is required to Question 3a. for the noise wall to be determined to be reasonable. Questions 3b through 3e represent desirable goals that need not be met for a noise wall to be determined reasonable. However, they must be addressed and should be considered in the determination of the recommended noise wall.

a. Does the noise wall reduce design year exterior_noise levels by at least 7 dB(A) for at least one benefited receptor?

	6	
	83%	
Χ	Yes	No
X	Yes	No
Χ	Yes	No
X	Yes	No
	N/A	

c. Does the noise wall provide insertion losses of greater than 7 dB(A) while still conforming to the MaxSF/BR value of 2,000 and a "point of diminishing returns" evaluation?

d. Does the noise wall reduce future exterior levels to the low-60-decibel range (60-63) for Category B and C receptors and the upper-60 dB(A) range (65-68) for Category E receptors?

N/A

Yes

Yes

Yes

Х

No

No

No

e. Does the noise wall reduce design year noise levels back to existing levels?

4. Noise Reduction Design Goals (Activity Category D) A "yes" answer is required to Question 4a. for the barrier to be determined to be reasonable. Question 4b represents a desirable goal that need not be met for a noise wall to be determined reasonable. However, this goal must be addressed and should be considered in the determination of the recommended noise wall.

a. Does noise wall reduce design year interior_noise levels by at least 7 dB(A) for the facility's analysis point?

b. While conforming to the MaxSF/BR criteria and justified by a "point of diminishing returns' evaluation, does the noise wall provide an interior insertion loss above the 7 dB(A) minimum

	Decision				
Is the Noise Wall WARRANTED?		X	Yes	<u>.</u>	No
Is the Noise Wall FEASIBLE?		X	Yes		No
Is the Noise Wall REASONABLE?			Yes	X	No

Additional Reasons for Decision:

An optimized barrier system extending 1,824 feet with an average height of 13.5 feet was identified to be Feasible, but not Reasonable under the criteria established by PennDOT and FHWA within Publication 24. This barrier is not recommended for construction.

Responsible/Qualified Individuals Making the Above Decisions

PennDOT Engineering District 3-0

Frederick E. Schiller, Noise Specialist, A.D. Marble & Company Qualified Professional Performing the Analysis

(name, title, and company name)

Date

3/25/2016 Date

Appendix E

List of Preparers

LIST OF PREPARERS

Fred Schiller

Education:

Professional Experience: Role:

Scott Siegwart Education:

Professional Experience: Role:

Matt Rodenberger Education:

Professional Experience: Role:

Brian Doyle

Education: Professional Experience: Role:

Colleen Meiswich Education:

Professional Experience: Role: Noise Specialist B.S., Business Marketing & Management (pending) A.S., General Education 11 years Highway Traffic Noise Analysis – discipline lead

Senior Environmental Scientist B.S., Civil Engineering

A.S., Civil Engineering Technology
A.S., Mechanical Drafting and Design
24 years
Highway Traffic Noise Analysis – technical review

GIS Technician

B.S., Liberal Studies, Minor in Business GIS and Geography and Planning1 yearReport figure preparation

Civil Engineer Designer

B.S., Civil Engineering6 yearsTraffic Noise Model digitization

Senior Project Manager M.S., Community and Regional Planning B.S., Biology and Environmental Science 16 years Project management